# **FINAL REPORT**

# Immunological Evaluation of Gasoline MTBE Vapor Condensate in Female Sprague Dawley Rats Using the Plaque Forming Cell Assay

| Test Substance:              | Gasoline MTBE Vapor Condensate                                                                                                                         |
|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| Protocol No:                 | HLS 00-6126                                                                                                                                            |
| Subcontractor's Sponsor:     | Huntingdon Life Sciences<br>Mettlers Road<br>East Millstone, NJ 08875<br>(732) 873-2550 <i>Phone</i><br>(732) 873-3992 <i>Fax</i>                      |
| Contractor's Study Director: | Gary M. Hoffman, B.A., DABT                                                                                                                            |
| Sponsor:                     | American Petroleum Institute<br>1200 L Street, NW<br>Washington, DC 20005                                                                              |
| Sponsor's Representative:    | Thomas M. Gray, M.S., DABT                                                                                                                             |
| ImmunoTox's Project Number:  | ITI 601                                                                                                                                                |
| Date:                        | 27 April 2007                                                                                                                                          |
| Principal Investigator:      | Kimber L. White, Jr., Ph.D.                                                                                                                            |
| Studies Conducted at:        | ImmunoTox, Inc.<br>Virginia Bio•Technology Research Park<br>800 East Leigh Street, Suite 209<br>Richmond, VA 23219-1534<br>(804) 828-6880 <i>Phone</i> |



# ImmunoTox, Inc.

(804) 828-6881 Fax

Virginia Bio•Technology Research Park 800 East Leigh Street, Suite 209 Richmond, VA 23219-1534 (804) 828-6880 *Phone* (804) 828-6881 *Fax* 

ITI Study No. ITI 601

I. GLP COMPLIANCE STATEMENT

This study was conducted in compliance with the United States Environmental Protection Agency's (EPA) Good Laboratory Practice Standards 79.60, CFR Vol. 59, No. 122, 27 June 1994 with the following exceptions:

- 1. It was the Sponsor's responsibility to maintain the methods of synthesis, fabrication, or derivation of the test fuel. This had not been completed when the study initiated but is currently with the Sponsor.
- 2. The identity, strength, purity and composition or other characteristics to define the positive control article have not been determined by the Testing Facility. The positive control article has not been characterized as per the Certificate of analysis on file with the Testing Facility. The stability of the positive control article has not been determined by the Testing Facility. Analyses to determine the uniformity (as applicable) or concentration of the positive control article mixture were not performed by the Testing Facility. The stability of the positive control article mixture has not been determined by the Testing Facility.

Gary M. Høffman, B.A., D.AB.T. Study Director

Date

Thomas M. Gray, M.S., D.A.B.T. Sponsor Representative

Date

ITI Study No. ITI 601

# II. QUALITY ASSURANCE STATEMENTS

# Test Substance: Gasoline MTBE Vapor Condensate

Report Title: Immunotoxicological Evaluation of Gasoline MTBE Vapor Condensate in Female Sprague Dawley Rats Using the Plaque Forming Cell Assay

Protocol Title: Gasoline MTBE Vapor Condensate: A 13-Week Whole-Body Inhalation Toxicity Study in the Rats with Neurotoxicity Assessments And 4-Week *In Vivo* Genotoxicity and Immunotoxicity Assessments

> Huntingdon Life Sciences, Inc. Study No. 00-6126 Sponsor Study No. 211-MTBE-S

The final report for the indicated protocol has been reviewed by the Quality Assurance Unit of Virginia Commonwealth University. Furthermore, the Quality Assurance Unit has conducted the following inspections and reported to the ImmunoTox, Inc. Principal Investigator, and then has submitted written reports of said inspections to the Study Director and Management via the Principal Investigator.

Inspection/Audits were performed and reported on the following dates:

| Performed           | Reported          | Activity                           |
|---------------------|-------------------|------------------------------------|
| March 7, 2001       | March 15, 2001    | AFC Assay                          |
| August 30, 2001     | September 7, 2001 | AFC Assay (2 <sup>nd</sup> Repeat) |
| October 19-22, 2001 | October 24, 2001  | Data Audit                         |
| October 22-24, 2001 | October 24, 2001  | 1 <sup>st</sup> Draft Report Audit |
| April 21, 2007      | April 23, 2007    | Final Report Audit                 |

Approved and submitted by:

ance Manager

Office of Research \* Quality Assurance Unit \* Box 980568 \* Richmond, Virginia 23298 0568 \* (804) 828-6587 \* Fax (804) 828-5604

# HUNTINGDON LIFE SCIENCES QUALITY ASSURANCE STATEMENT

Listed below are the dates that this study was inspected by the Quality Assurance Unit of Huntingdon Life Sciences, East Millstone, New Jersey, and the dates that findings were reported to the Study Director and Management. This report reflects the raw data as far as can be reasonably established.

| Type of Inspection                                             | Date(s) of<br>Inspection | Reported to<br>Study Director<br>and Management |
|----------------------------------------------------------------|--------------------------|-------------------------------------------------|
| GLP Protocol Review                                            | 8 – 9 Jan 01             | 12 Jan 01                                       |
| Positive Control Immunotoxicity<br>Animals Dose Administration | 2 Mar 01                 | 2 Mar 01                                        |
| Immunotoxicity Necropsy and Training<br>Records                | 6 Mar 01                 | 8 Mar 01                                        |
| Immunotoxicity Blood Collection and Necropsy                   | 2 May 01                 | 2 May 01                                        |
| Positive Control Dose Administration                           | 27 Aug 01                | 29 Aug 01                                       |
| Immunotoxicity Necropsy and Training<br>Records                | 29 Aug 01                | 29 Aug 01                                       |
| Final Immunotox Report                                         | 6 – 8 Aug 01             | 8 Nov 01                                        |
| Sponsor's Comments & Report<br>Verification                    | 22 – 24 Aug 05           | 24 Aug 05                                       |

Sonya Gray Senior Quality Assurance Auditor

27 Juno7 Date

#### 111. SIGNATURE OF PRINCIPALS

This report describes the results used to evaluate the relative immunotoxicological potential of the test substance, Gasoline MTBE Vapor Condensate, which was administered by inhalation via whole-body exposure to female Sprague Dawley rats.

Kimber L. White, Jr., Ph.D., Principal Investigator, was responsible for the overall conduct of the immunotoxicity evaluations in this study. Vanessa L. Peachee, M.S., served as the Assistant Principal Investigator and was responsible for the day-to-day activities of the immunotoxicity evaluations in this study.

Kimber L. White, Jr., Ph.D. Principal Investigator ImmunoTox, Inc.

Vanessa L. Peachee, M.S. Assistant Principal Investigator ImmunoTox, Inc.

Approved:

Gary M. Hoffman, B.A., D.A.B.T. Study Director Huntingdon Life Sciences

achel Date 27 Apr 07 Ochel Date 27002

Date

# TABLE OF CONTENTS

| I.    | GLP Compliance Statement2                                                        |
|-------|----------------------------------------------------------------------------------|
| II.   | Quality Assurance Statements                                                     |
|       | ImmunoTox, Inc3                                                                  |
|       | Huntingdon Life Sciences4                                                        |
| 111.  | Signature of Principals                                                          |
| IV.   | Executive Summary8                                                               |
| V.    | Introduction11                                                                   |
| VI.   | Methods of Procedure                                                             |
|       | Experimental Design                                                              |
|       | Variables Assessed 13                                                            |
|       | Terminal Body and Organ Weights13                                                |
|       | Splenocyte Preparation                                                           |
|       | Spleen IgM Antibody Response to the T-dependent Antigen, sRBC. Day 4 Response 14 |
|       | Data                                                                             |
|       | Data Handling and Statistical Analysis15                                         |
|       | Data Retention                                                                   |
| VII.  | Results                                                                          |
|       | Terminal Body and Organ Weights16                                                |
|       | Spleen IgM Antibody Response to the T-dependent Antigen, sRBC. Day 4 Response 18 |
| VIII. | Conclusion                                                                       |
| IX.   | References                                                                       |
| Х.    | List of Figures                                                                  |
|       | 1. Absolute (mg) and Relative (%) Spleen Weight in Female Sprague Dawley Rats    |
|       | Exposed to Gasoline MTBE Vapor Condensate via Inhalation for 5 Days per Week for |
|       | 4 Weeks (2 <sup>nd</sup> Repeat Study)17                                         |
|       | 2. Absolute (mg) and Relative (%) Thymus Weight in Female Sprague Dawley Rats    |
|       | Exposed to Gasoline MTBE Vapor Condensate via Inhalation for 5 Days per Week for |
|       | 4 Weeks (2 <sup>nd</sup> Repeat Study)17                                         |
|       |                                                                                  |

 Absolute Cell Number in Female Sprague Dawley Rats Exposed to Gasoline MTBE Vapor Condensate via Inhalation for 5 Days per Week for 4 Weeks(2<sup>nd</sup> Repeat Study)

- XI. List of Tables

## APPENDICES

- A First and Repeat Study Tables
- B Individual Animal Data
- C Contracting Sponsor's Exposure and Animal Data

### IV. EXECUTIVE SUMMARY

The study was conducted as part of Huntingdon Life Sciences (HLS) Study No. 00-6126 at ImmunoTox, Inc., Richmond, Virginia. The Principal Investigator was Kimber L. White, Jr., Ph.D., and Vanessa L. Peachee, M.S., served as the Assistant Principal Investigator. The study was conducted to provide evaluation of immunological parameters for Huntingdon Life Sciences.

The objective of the study was to determine the potential effects of Gasoline MTBE Vapor Condensate for its ability to affect the humoral immune component of the immune system, when evaluated in the antibody-forming cell response to the T-dependent antigen sheep erythrocytes. Female Sprague Dawley rats were administered Gasoline MTBE Vapor Condensate for 5 days per week for 4 weeks by inhalation via whole body exposure by Huntingdon Life Sciences (HLS) Princeton Research Center (PRC) personnel. Three exposure levels of 2,000, 10,000, and 20,000 mg/m<sup>3</sup> of the test substance were used in the study. The in-life phase of the study was conducted by HLS, East Millstone, NJ, and the immunological evaluation was conducted by ImmunoTox, Inc., Richmond, VA. Huntingdon Life Sceinces PRC personnel collected blood (serum) samples (orbital collection anesthetized via carbon dioxide/oxygen inhalation) and then sacrificed (carbon dioxide inhalation) the animals on the day after the final exposure. The serum samples were frozen ( $\leq$ -20°C). The thymuses were removed and weighed by PRC personnel, and preserved (formalin) for possible histopathology. On the day of sacrifice, spleens were placed in tubes containing media, placed on ice, and shipped to ImmunoTox, Inc. in Richmond, VA, for assay evaluation on the following day.

In evaluating the effect of Gasoline MTBE Vapor Condensate on the humoral immune response, three studies were conducted. In the first study, cyclophosphamide (CPS) the positive control produced the anticipated suppression in the functional assay. However, treatment with CPS did not result in a significant decrease in spleen cell number as is routinely observed. The lack of effect on spleen cell number, was a concern to the Principal Investigator. After discussions among the Principal Investigator, Study Director, and the Sponsor, the decision was made to repeat the study. A repeat study was carried out. However, due to oversight, the spleens were collected but not sent by overnight delivery. After discussions between the Principal Investigator and the Study Director, the decision was made to run the assay when the samples arrived at ImmunoTox Inc., which was two days after sacrifice. On a previous study conducted by ImmunoTox, Inc., for a different sponsor, a similar situation had occurred. The results from that study, when the spleens were evaluated two days after sacrifice, were usable being consistent with results from studies conducted on samples received the day after sacrifice.

In the repeat Gasoline MTBE Vapor Condensate, this was not the case. The Principal Investigator considered the results obtained from the functional assays unusable for a proper immunotoxicological evaluation of Gasoline MTBE Vapor Condensate. Accordingly, the study was then conducted for a third time, referred to as the 2<sup>nd</sup> Repeat Study, and it is the results from this third study which are reported in this report. The results from the first study and the repeat study are included in the Appendix of the report and are referred to on occasion.

Executive Summary Table ES-1 shows a summary of the selected toxicology and immunology parameters evaluated. Exposure to Gasoline MTBE Vapor Condensate resulted in no statistically significant changes in terminal body weight for any exposure level. Furthermore, there were no statistically significant effects observed in either thymus or spleen weight following exposure to Gasoline MTBE Vapor Condensate, when evaluated as either absolute or relative weight (% body weight), as compared to the air control.

Exposure to Gasoline MTBE Vapor Condensate did not result in statistically significant changes in the IgM antibody-forming cell (AFC) response to the T-dependent antigen, sheep erythrocytes, when evaluated as either specific activity (AFC/10<sup>6</sup> spleen cells) or as total spleen activity (AFC/spleen). In the 2<sup>nd</sup> Repeat Study, the positive control, CPS, produced the anticipated results in the various parameters evaluated.

In conclusion, the results of this immunotoxicological evaluation demonstrate that, under the experimental conditions used, exposure to the Gasoline MTBE Vapor Condensate test substance did not adversely affect the functional ability of the humoral immune component of the immune system.

# Table ES-1

# SUMMARY TABLE FOR TOXICOLOGY AND IMMUNOLOGY STUDIES

| Parameter                 | Result                                | Maximum<br>Effect | Dose         | Comment                               |
|---------------------------|---------------------------------------|-------------------|--------------|---------------------------------------|
| Body Weight               |                                       |                   |              |                                       |
| Day 29                    | No Effect                             |                   |              |                                       |
| Organ Weights Absolute    | · · · · · · · · · · · · · · · · · · · |                   |              | · · · · · · · · · · · · · · · · · · · |
| Spleen                    | No Effect                             |                   |              |                                       |
| Thymus                    | No Effect                             |                   |              |                                       |
| Organ Weights Relative    |                                       |                   |              |                                       |
| Spleen                    | No Effect                             |                   |              |                                       |
| Thymus                    | No Effect                             |                   |              |                                       |
| pleen IgM Antibody-Formir | ng Cell Res                           | ponse to She      | ep Erythrocy | /tes                                  |
| IgM AFC to sRBC           | No Effect                             | -                 | ,            |                                       |

# V. INTRODUCTION

The purpose of this study was to provide evaluation of immunological parameters for Huntingdon Life Sciences (HLS) Study No. 00-6126. In this study (2<sup>nd</sup> Repeat Study), the test substance, Gasoline MTBE Vapor Condensate, was evaluated for its ability to affect the humoral immune component of the immune system, when evaluated in the antibody-forming cell response to the T-dependent antigen sheep erythrocytes. The study was conducted in female animals because female rats have a more robust immune response than do the male animal of the species. Accordingly, female rats have a greater sensitivity for detecting an adverse effect of a compound should one occur. Routinely, immunotoxicology evaluations conducted by the National Toxicology Program (NTP) evaluate compounds only in female animals. Four days prior to sacrifice, ImmunoTox, Inc. personnel sensitized the rats by intravenous administration of sheep erythrocytes at the HLS facility. On the day of sacrifice, HLS Princeton Research Center (PRC) personnel aseptically removed the spleen from each animal. The spleens were weighed, placed in tubes containing media, and sent on ice to ImmunoTox, Inc. in Richmond, VA, for evaluation the following day. The IgM antibody-forming cell (AFC) response to the T-dependent antigen sheep erythrocytes, also referred to as the plaque assay, was the immunological assay conducted to evaluate the effect of Gasoline MTBE Vapor Condensate on the immune response. This assay has been shown to be the most predictive assay for determining the immunotoxicological potential of a compound (Luster et al.<sup>1</sup>).

In evaluating the effect of Gasoline MTBE Vapor Condensate on the humoral immune response, three studies were conducted. In the first study, spleens were received on 07 March 2001 and the immunological evaluation was conducted on this day. In this first study, cyclophosphamide (CPS) the positive control produced the anticipated suppression in the functional assay. However, treatment with CPS did not result in a significant decrease in spleen cell number as is routinely observed. The lack of effect on spleen cell number, was a concern to the Principal Investigator. After discussions among the Principal Investigator, Study Director, and the Sponsor, the decision was made to repeat the study.

A repeat study was carried out; however, due to oversight, the spleens were collected but not sent by overnight delivery. After discussions between the Principal Investigator and the Study Director, the decision was made to run the assay when the samples arrived at ImmunoTox Inc. Spleens arrived on 04 May 2001, two days after sacrifice. In a previous study conducted by ImmunoTox, Inc., for a different sponsor, a similar situation had occurred. The results from that study, when the spleens were evaluated two days after sacrifice, were usable being consistent

with results from studies conducted on sample received the day after sacrifice. In the repeat Gasoline MTBE Vapor Condensate, this was not the case. The Principal Investigator considered the results obtained from the functional assays unusable for a proper immunotoxicological evaluation of Gasoline MTBE Vapor Condensate since the response of the control animals was so low. Accordingly, the study was then conducted for a third time; this third study is referred to as the 2<sup>nd</sup> Repeat Study. The spleens for the 2<sup>nd</sup> Repeat Study arrived on 30 August 2001, one day after sacrifice, and were evaluated the same day. The results from the 2<sup>nd</sup> Repeat Study are included in this report. The data tables from the first study and the repeat study are included in the Appendix of the report and are referred to on occasion.

Kimber L. White, Jr., Ph.D., was the Principal Investigator for the immunological evaluation conducted by ImmunoTox, Inc., and Gary M. Hoffman, B.A., DABT, was the HLS Study Director. Vanessa L. Peachee, M.S., served as the Assistant Principal Investigator for ImmunoTox, Inc. and was responsible for carrying out the IgM antibody-forming cell assay.

In evaluating the effects of Gasoline MTBE Vapor Condensate on the immune system, the immunologic and toxicologic parameters evaluated were: spleen and thymus weights, and the spleen IgM antibody response to the T-dependent antigen (sheep erythrocytes, sRBC).

To the best of our knowledge, no significant protocol or standard operating procedure deviations occurred during the 2<sup>nd</sup> Repeat Study, which affected the quality of the data and the ability to interpret the data with respect to the immunotoxicology of Gasoline MTBE Vapor Condensate.

#### VI. METHODS OF PROCEDURE

#### EXPERIMENTAL DESIGN

The immunotoxicological satellite study consisted of a vehicle group, three exposure levels of Gasoline MTBE Vapor Condensate, and a positive control group. There were 10 female Sprague Dawley rats in each of the groups. Animals were exposed by Huntingdon Life Sciences Princeton Research Center (PRC) personnel to either vehicle (air only) or Gasoline MTBE Vapor Condensate at exposure levels of 2,000, 10,000 or 20,000 mg/m<sup>3</sup> via inhalation for 4 weeks (5 days per week). Cyclophosphamide (CPS; Sigma Chemical Co., Lot No. 108H0568), was given as the positive control. The positive control animals received 50 mg/kg of CPS, a known immunosuppressive agent, administered intraperitoneally (i.p.) on the last 4 days of exposure by PRC personnel. CPS, a white powder, was prepared in phosphate buffered saline at a concentration of 5 mg/ml and stored in aliquots at -10 to -30°C. On each day of exposure an aliquot was thawed and used. The expiration date of each thawed aliquot was the day of use. Purity and stability information on cyclophosphamide is on file with the manufacturer. These animals were not chamber exposed. Four days prior to sacrifice, animals were sensitized by ImmunoTox personnel in the morning with sRBC by i.v. injection. On the morning of the day of sacrifice, one day after the last exposure, PRC personnel aseptically removed the spleen from each animal, weighed it, placed it in a collecting tube containing Earle's Balanced Salt Solution (EBSS) with HEPES and Gentamicin solution, and shipped the spleens in individual shipping containers at 2-8°C on ice packs by carrier to ImmunoTox for overnight delivery. Upon receipt the next day, spleens were further processed for determination of IgM antibody response

### VARIABLES ASSESSED

Terminal Body and Organ Weights. The terminal body weights were obtained by Huntingdon Life Sciences PRC personnel. Huntingdon Life Sciences PRC personnel collected blood (serum) samples (orbital collection anesthetized via carbon dioxide/oxygen inhalation) and then sacrificed (carbon dioxide inhalation) the animals on the day after the final exposure. The serum samples were frozen ( $\leq$ -20°C). The thymuses were removed, weighed and preserved (formalin) for possible histopathology. Spleens were removed, weighed, and shipped at the time of sacrifice by PRC personnel to ImmunoTox, Inc. for immunotoxicological evaluation.

<u>Splenocyte Preparation</u>. Upon arrival at the ImmunoTox testing facility, spleens were accessioned in accordance with the SOP for receipt of biological samples. Single-cell suspensions were prepared from each spleen using a Stomacher® 80 Lab Blender in accordance with the SOP for rat spleens. Cell suspensions were then centrifuged and resuspended in Earle's Balanced Salt Solution with HEPES. Viability of splenocytes were determined using propidium iodide (PI) and the Coulter EPICS XL-MCL Flow Cytometer.

Spleen IgM Antibody Response to the T-dependent Antigen, sRBC. Day 4 Response. As background, sheep erythrocytes (sRBC) are a T-dependent antigen and, thus, T cells, B cells, and macrophages are required to function properly in order to obtain an antibody-forming cell (AFC) response. If the test article affects any of these cell types to a significant degree, an altered response will be observed. As a result, the T-dependent IgM response to sRBC is one of the most sensitive immunotoxicological assays currently in use. A significant modulation in the IgM AFC response, when appropriately compared to vehicle controls, indicates that the test agent is capable of modifying the humoral immune response in the whole animal and, thus, has the potential for immunotoxicity. This assay is one of the Tier I assays used by the NTP<sup>2</sup>.

The primary IgM response to sheep erythrocytes was measured using a modified hemolytic plaque assay of Jerne<sup>3</sup>. Rats were exposed to the test article for 5 days per week for 4 weeks. Rats were sensitized by ImmunoTox, Inc. personnel with  $2x10^8$  sRBC i.v. four days prior to sacrifice and, on the day after the last exposure, animals were sacrificed by PRC personnel. Spleen cell suspensions were prepared as described above. The cells were centrifuged and resuspended in a 6-ml volume, and 1:50 and 1:150 dilutions were prepared. An 0.1-ml aliquot of spleen cells from each suspension was added to separate test tubes, each containing 25  $\mu$ l guinea pig complement, 25  $\mu$ l sRBC, and 0.5 ml of warm agar (0.5%). After thoroughly mixing, each test tube mixture was plated onto a separate petri dish, covered with a microscope cover slip, and incubated at approximately 36-38°C for 3 hours. One dilution per animal was evaluated. Spleen cell number, following lysis of RBC, was performed on the 6-ml samples using a Model Z1 Coulter Counter. The spleen weight, cells/spleen, AFC/10<sup>6</sup> spleen cells, and AFC/spleen were determined. The plaques that developed were counted using a Bellco plaque viewer. For each spleen, 2 dilutions (1:50 and 1:150) were prepared. At the time of counting, each plate was examined. Routinely, the plate that had between 100-300 plaques was counted. When the

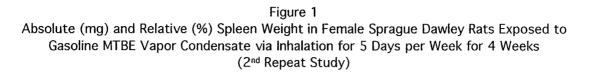
number of plaques are in excess of 350 plaques per plate, it becomes difficult to obtain an accurate count using the Bellco viewer. A plaque, occurring from the lysis of sRBC, is elicited as a result of the interaction of complement and antibodies (produced in response to the i.v. sensitization) directed against sRBC. Each plaque is generated from a single IgM antibody-producing B cell, permitting the number of AFC present in the whole spleen to be calculated. The data are expressed as specific activity (AFC/10<sup>6</sup> spleen cells) and total spleen activity (AFC/spleen).

#### Data

Data Handling and Statistical Analysis. The data obtained in this study were analyzed in accordance with standard operating procedures. Data were first tested for homogeneity of variances using the Bartlett's Chi Square Test<sup>4</sup>. Homogeneous data were evaluated by a parametric one-way analysis of variance<sup>5</sup>. When significant differences occur, exposed groups were compared to the vehicle control group using the Dunnett's t Test<sup>6</sup>. Non-homogeneous data were evaluated using a non-parametric analysis of variance<sup>5</sup>. When significant differences occur, exposed groups were compared to vehicle control group using the Gehan-Wilcoxon Test<sup>7</sup> when appropriate. The Jonckheere's Test<sup>8</sup> was used to test for exposure level-related trends across the vehicle and exposed groups. The positive control was compared to the vehicle control group using the Student t Test<sup>9</sup>. The criteria for accepting the results of the positive control in the assay was a statistically significant ( $p \le 0.05$ ) decrease in the response as compared to the vehicle control group.

P values of 0.05 or less, as compared to the vehicle control group, were considered statistically significant and are indicated in the tables and in the figures with a single asterisk (\*). A double asterisk (\*\*) was used to indicate a p value of 0.01 or less. In the text, the word significant indicates that the response was statistically significant at  $p \le 0.05$ . In the tables the abbreviation NS is used to indicate "Not Significant" for p values greater than 0.05.

<u>Data Retention</u>. All data and records were returned to the Contracting Sponsor following acceptance of the final report. Records maintained for this protocol include: study sheet, chemical preparation form, and authorized signatures and initials forms. Upon completion of this study, the report and raw data for this study will be maintained in the archives of Huntingdon Life Sciences.


# VII. RESULTS

## TERMINAL BODY AND ORGAN WEIGHTS

The terminal body weight data for the 2<sup>nd</sup> Repeat Study are shown in Table 1 for the control and Test Substance-exposed groups. No statistically significant differences were observed in terminal body between the vehicle control and the animals exposed to Gasoline MTBE Vapor Condensate. A similar lack of effect on terminal body weight was observed in the first and repeat studies (Appendix A).

The organ weights of the control and Test Substance-exposed rats for the 2<sup>nd</sup> Repeat Study are shown in Table 1. No effect was observed, following exposure to Gasoline MTBE Vapor Condensate, on spleen or thymus weight when evaluated either as absolute or relative weight. A similar lack of effect on organ weights was observed in the first and repeat studies (Appendix A).

Shown graphically in Figures 1 and 2 is the lack of effect on spleen and thymus weights following exposure to Gasoline MTBE Vapor Condensate.



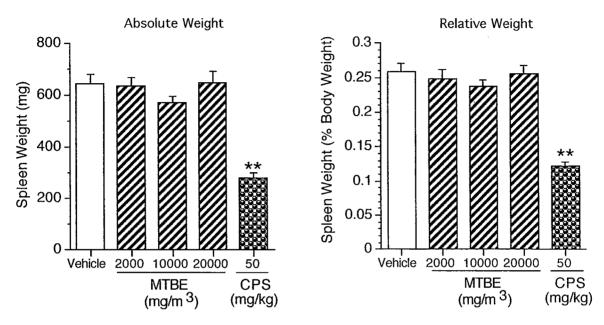
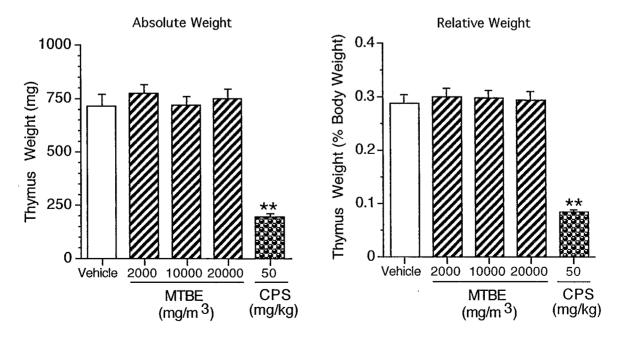



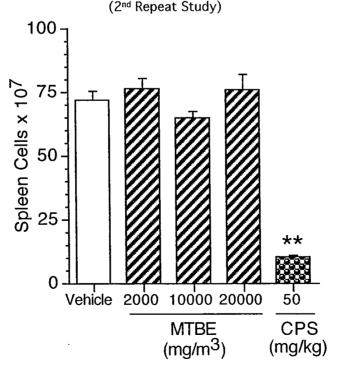

Figure 2

Absolute (mg) and Relative (%) Thymus Weight in Female Sprague Dawley Rats Exposed to Gasoline MTBE Vapor Condensate via Inhalation for 5 Days per Week for 4 Weeks (2<sup>nd</sup> Repeat Study)



In the 2<sup>nd</sup> Repeat Study, treatment with the positive control, cyclophosphamide, produced a significant decrease of 56% on absolute spleen weight and a 73% decrease on absolute thymus weight, compared to the vehicle control. When evaluated as relative weight, cyclophosphamide, produced a 53% decrease in spleen weight and a 71% decrease on thymus weight.

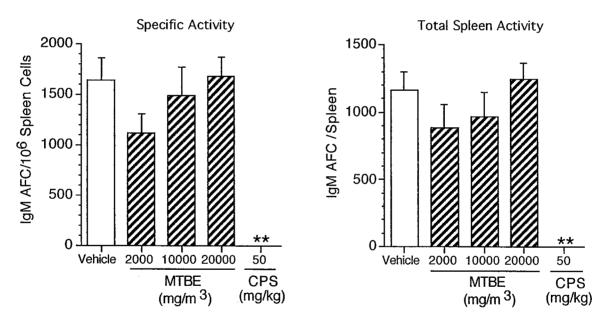
#### SPLEEN IGM ANTIBODY RESPONSE TO THE T-DEPENDENT ANTIGEN, SRBC. DAY 4 RESPONSE


The spleen IgM antibody-forming cell response, i.e. plaque assay, was evaluated on spleens removed 1 day after the last exposure, which was Day 4 after antigen sensitization. Day 4 after antigen sensitization is the peak day for the sRBC IgM AFC response in rats. Viabilities were conducted on all cell suspensions using propidium iodide (PI) and the Coulter EPICS XL-MCL Flow Cytometer. The viabilities from all samples were greater than 87%.

In the plaque-forming cell (PFC) assays conducted by our laboratory and at the National Toxicology Program (NTP) Immunotoxicology Laboratory of the National Institute of Environmental Health Sciences, the PFC assay results are not adjusted for spleen cell viability. The reasons for this are as follows. In in vitro studies, which utilize a single population of cells, e.g. YAC-1 cells, correcting for viability is biologically meaningful. These cells, being of identical type, respond to stimuli in a similar manner and will die off at a similar rate. When spleens are utilized as the source of cells, this represents a heterogeneous mixture of cells, including neutrophils, lymphocytes, and macrophages. Each of these cell types will respond differently to stimuli under in vitro conditions, i.e., neutrophils will die off at a faster rate than lymphocytes. Accordingly, conducting viability determinations on total spleen cells is of little biological value when one is evaluating antigen specific antibody production by plasma cells. More specifically, once the structural integrity of the spleen is compromised, as occurs in preparing a single cell suspension, the cells now in an in vitro environment begin to die with the polymorphonuclear cells dying off at a much faster rate than will either lymphocytes or macrophages. The procedure utilized in our laboratory, and by the NTP Immunotoxicology Laboratory, minimizes the time it takes from preparing the single cell suspension of spleen cells to having them incubating in the assay petri dishes. By minimizing this preparation time, we also minimize the loss of viability, which occurs the longer the cells sit in the in vitro cell culture conditions. The decrease in viability, which does occur during this time, is predominately due to the dying off of the more fragile polymorphonuclear cells and not the lymphocytes, particularly those antibodyforming cells (plasma cells) making antibody to sheep erythrocytes. This is due in part to the fact that cells undergoing high metabolic activities, such as rapidly proliferating cells or cells synthesizing antibody, are less susceptible to compounds which produce cell death than are quiescent cells. It is for these reasons that there is no correlation between viability of individual spleen cell preparations and their ability to produce antibodies to sheep erythrocytes. Correcting for viability for a homogenous population in *in vitro* cultures is scientifically sound; however, as indicated above, using this procedure for mixed cell populations such as those present in the spleen, will result in artificially inflated PFC values.

The results of the 2<sup>nd</sup> Repeat Study AFC response are shown in Table 2 and in Figures 3 and 4. As was shown in Table 1 and Figure 1 above, exposure to Gasoline MTBE Vapor Condensate did not result in spleen weights significantly different from the vehicle control group. Furthermore, as shown in Figure 3, there was no significant difference in the spleen cell number following exposure to Gasoline MTBE Vapor Condensate. A similar lack of effect on spleen cell numbers was observed in the first and repeat studies (Appendix A). As expected, in the 2<sup>nd</sup> Repeat Study, the positive control, cyclophosphamide (CPS), produced an 85% decrease in spleen cell number when compared to the vehicle control group.

#### Figure 3


Spleen Cell Number in Female Sprague Dawley Rats Exposed to Gasoline MTBE Vapor Condensate via Inhalation for 5 Days per Week for 4 Weeks



Shown in Table 2 and Figure 4 are the functional results from the IgM antibody-forming cell (AFC) assay. Shown in the left panel are the results when the data are expressed as specific activity and the results of the total spleen activity are shown in the right panel. While the AFC response of the low dose animals was less than those of the vehicle air controls, the decrease did not reach the level of statistical significance. In the IgM antibody-forming cell response, there were no statistically significant differences between the Gasoline MTBE Vapor Condensate-exposed animals and the vehicle control group when evaluated either as specific activity (AFC/10<sup>6</sup> spleen cells) or as total spleen activity (AFC/spleen). As anticipated, the positive control, CPS, significantly decreased the AFC response when evaluated as either specific activity or total spleen cell activity.

#### Figure 4

IgM Antibody-Forming Cell Response to Sheep Erythrocytes in Female Sprague Dawley Rats Exposed to Gasoline MTBE Vapor Condensate via Inhalation for 5 Days per Week for 4 Weeks (2<sup>nd</sup> Repeat Study)



## VIII. CONCLUSION

Exposure of female Sprague Dawley rats to Gasoline MTBE Vapor Condensate for a period of 5 days per week for 4 weeks did not result in alterations of the humoral immune response as evaluated in the IgM antibody-forming cell response to the T-dependent antigen sheep erythrocytes. There was no statistically significant effect on thymus weight, spleen weight, spleen cell number, or IgM antibody production when evaluated as either specific activity or as total spleen activity. Based on the immunological parameters evaluated, under the experimental conditions of the study, Gasoline MTBE Vapor Condensate did not adversely affect the immune response of female Sprague Dawley rats.

ITI Study No. ITI 601

# IX. REFERENCES

- 1. Luster MI, Portier C, Pait DG, White KL, Jr., Gennings C, Munson AE and Rosenthal GJ (1992) Risk assessment in immunotoxicology. I. Sensitivity and predictability of immune tests. *Fund. Appl. Toxicol.* 18:200-210.
- 2. Luster MI, Munson AE, Thomas P, Holsapple MP, Fenters J, White KL, Jr., Lauer LD, and Dean JD (1988). Development of a testing battery to assess chemical-induced immunotoxicity. *Fund. Appl. Toxicol.* 10:2-19.
- 3. Jerne NK, Henry C, Nordin AA, Fun H, Koros MC, and Lefkovits I (1974). Plaque-forming cells: Methodology and theory. *Trnspl. Rev.* 18:130-191.
- 4. Bartlett MS (1937). Sub-sampling for attributes. J. Roy. Stat. Soc. Suppl. 4:131-135.
- 5. Kruskal WH and Wallis WA (1952). Use of ranks in one-criterion variance analysis. *J. Amer. Stat. Assoc.* 47:583-621.
- 6. Dunnett CW (1955). A multiple comparison procedure for comparing several treatments with a control. *J. Amer. Stat. Assoc.* 50:1096-1121.
- 7. Gross AJ and Clark VA (1975). Gehan-Wilcoxon Test. In *Survival Distributions: Reliability Applications in the Biomedical Sciences*. AJ Gross and VA Clark, eds. John Wiley and Sons, New York, p. 225-256.
- 8. Hollander M and Wolfe DA (1973). Jonckheere's Test: Non-parametric Statistical Methods, eds. M Hollander and DA Wolfe, John Wiley and Sons, New York, p. 124-129.
- 9. Sokal RR and Rohlf FJ (1981). *Biometry*. Freeman, San Francisco, p. 222-229.

# Body Weight (g) and Organ Weights (mg) in Female Sprague Dawley Rats Exposed to Gasoline MTBE Vapor Condensate via Inhalation for 5 Days per Week for 4 Weeks

Table 1

| 2 <sup>nd</sup> | Repeat | Study |
|-----------------|--------|-------|
|-----------------|--------|-------|

| Parameter                 | Vehicle                   | <u>Gasc</u><br>2000       | oline MTBE Vapor<br>10000 | <u>(mg/m<sup>3</sup>)</u><br>20000 | Cyclophosphamide<br>50 mg/kg  | H/NH Trend<br>Analysis |
|---------------------------|---------------------------|---------------------------|---------------------------|------------------------------------|-------------------------------|------------------------|
|                           | (10)                      | (10)                      | (10)                      | (10)                               | (10)                          |                        |
| Body Wgt (g)              | 248.3 ± 6.1               | 256.9 ± 3.3               | 242.5 ± 6.5               | 254.8 ± 7.2                        | 231.3 ± 9.2                   | h ns                   |
| Spleen (mg)<br>% Body Wgt | 646 ± 35<br>0.259 ± 0.012 | 637 ± 34<br>0.248 ± 0.013 | 574 ± 25<br>0.237 ± 0.009 | 651 ± 43<br>0.255 ± 0.012          | 283 ± 18**<br>0.122 ± 0.006** | H NS<br>H NS           |
| Thymus (mg)<br>% Body Wgt | 719 ± 53<br>0.288 ± 0.016 | 775 ± 40<br>0.301 ± 0.015 | 722 ± 38<br>0.298 ± 0.015 | 753 ± 43<br>0.295 ± 0.016          | 196 ± 15**<br>0.084 ± 0.005** | H NS<br>H NS           |

Female Sprague Dawley rats were administered vehicle control (air only) or Gasoline MTBE Vapor Condensate by inhalation via whole-body exposure for 5 days per week for 4 weeks. The positive control, cyclophosphamide, was administered i.p. on the last 4 days of exposure. On the day of sacrifice, spleens were placed in tubes containing media and sent to Richmond, VA, on ice for next day cell preparation. The rats were necropsied and indicated organs weighed. Values represent the mean  $\pm$  SE derived from the number of animals indicated in parentheses. H = homogeneous data and NH = non-homogeneous data using the Bartlett's Test for homogeneity. Homogeneous data were evaluated using a parametric analysis of variance. When significant differences occurred, exposed groups were compared to the vehicle control group using the Dunnett's t Test. The positive control was compared to the vehicle control using the Student's t Test. Values significantly different from vehicle control at  $p \le 0.05$  are indicated by an asterisk, while those significant at  $p \le 0.01$  are noted by a double asterisk. The Jonckheere's Test was used to test for exposure level-related trends among the vehicle and exposed groups.

ITI Study No. ITI 601

## Table 2

# Spleen Antibody-Forming Cell Response to T-dependent Antigen Sheep Erythrocytes in Female Sprague Dawley Rats Exposed to Gasoline MTBE Vapor Condensate via Inhalation for 5 Days per Week for 4 Weeks Day 4 Response

|                         | 2 <sup>nd</sup> Repeat Study |            |                     |                              |                      |  |  |
|-------------------------|------------------------------|------------|---------------------|------------------------------|----------------------|--|--|
| Exposure                | Body Wgt                     | Spleen Wgt | Spleen Cells        | IgM AFC/                     | IgM AFC/Spleen       |  |  |
|                         | (g)                          | (mg)       | (x10 <sup>7</sup> ) | 10 <sup>6</sup> Spleen Cells | (x 10 <sup>3</sup> ) |  |  |
| Vehicle                 | $248.3 \pm 6.1$              | 646 ± 35   | 72.09 ± 3.82        | 1646 ± 218                   | 1162 ± 137           |  |  |
|                         | (10)                         | (10)       | (10)                | (10)                         | (10)                 |  |  |
| Gasoline MTBE V         | apor                         |            |                     |                              |                      |  |  |
| 2000 mg/m <sup>3</sup>  | 256.9 ± 3.3                  | 637 ± 34   | 76.52 ± 4.07        | 1128 ± 190                   | 887 ± 171            |  |  |
|                         | (10)                         | (10)       | (10)                | (10)                         | (10)                 |  |  |
| 10000 mg/m <sup>3</sup> | 242.5 ± 6.5                  | 574 ± 25   | 65.13 ± 2.81        | 1490 ± 282                   | 966 ± 185            |  |  |
|                         | (10)                         | (10)       | (10)                | (10)                         | (10)                 |  |  |
| 20000 mg/m <sup>3</sup> | 254.8 ± 7.2                  | 651 ± 43   | 76.28 ± 5.97        | 1680 ± 199                   | 1245 ± 122           |  |  |
|                         | (10)                         | (10)       | (10)                | (10)                         | (10)                 |  |  |
| Cyclophosphamid         |                              | . ,        |                     |                              |                      |  |  |
| 50 mg/kg                | 231.3 ± 9.2                  | 283 ± 18** | 10.65 ± 0.74**      | 0 ± 0**                      | 0 ± 0**              |  |  |
|                         | (10)                         | (10)       | (10)                | (10)                         | (10)                 |  |  |
| H/NH                    | Н                            | Н          | н                   | Н                            | Н                    |  |  |
| Trend Analysis          | NS                           | NS         | NS                  | NS                           | NS                   |  |  |

Female Sprague Dawley rats were administered vehicle control (air only) or Gasoline MTBE Vapor Condensate by inhalation via whole-body exposure for 5 days per week for 4 weeks. The positive control, cyclophosphamide, was administered i.p. the last 4 days of exposure. Four days prior to sacrifice, the rats were immunized (iv) with  $2x10^8$  sRBC. On the day of sacrifice, spleens were placed in tubes containing media. Spleens were sent to Richmond, VA, on ice the following day. Spleens were prepared into single cell suspensions and the number of IgM sRBC antibody-forming cells was determined. Values represent the mean  $\pm$  SE derived from the number of animals indicated in parentheses. H = homogeneous data and NH = non-homogeneous data using the Bartlett's Test for homogeneity. Homogeneous data were evaluated using a parametric analysis of variance. When significant differences occurred, exposed groups were compared to the vehicle control group using the Dunnett's t Test. The positive control was compared to the vehicle control using the Student's t Test. Values significantly different from vehicle control at p  $\leq$  0.05 are indicated by an asterisk, while those significant at p  $\leq$  0.01 are noted by a double asterisk. The Jonckheere's Test was used to test for exposure level-related trends among the vehicle and exposed groups.

ITI Study No. ITI 601

.....

# APPENDIX A – FIRST AND REPEAT STUDY TABLES

| Parameter    | Vehicle           | Gase          | oline MTBE Vapor | $(mg/m^3)$        | Cyclophosphamide | H/NH Trend |
|--------------|-------------------|---------------|------------------|-------------------|------------------|------------|
|              | (10)              | 2000<br>(10)  | 10000<br>(10)    | 20000<br>(10)     | 50 mg/kg<br>(10) | Analysis   |
| Body Wgt (g) | 251.5 ± 6.8       | 261.9 ± 5.7   | 257.3 ± 3.7      | 245.9 ± 4.5       | 234.3 ± 4.7      | h ns       |
| Spleen (mg)  | 612 ± 36          | 596 ± 24      | 623 ± 21         | 574 ± 23          | 274 ± 10**       | h ns       |
| % Body Wgt   | $0.243 \pm 0.012$ | 0.229 ± 0.011 | 0.242 ± 0.007    | 0.233 ± 0.008     | 0.117 ± 0.003**  | h ns       |
| Thymus (mg)  | 614 ± 36          | $555 \pm 30$  | 544 ± 20         | 514 ± 23          | 129 ± 8**        | H p ≤ 0.01 |
| % Body Wgt   | 0.245 + 0.013     | 0.213 ± 0.011 | 0.211 ± 0.007    | $0.211 \pm 0.011$ | 0.055 ± 0.004**  | H p ≤ 0.05 |

# Body Weight (g) and Organ Weights (mg) in Female Sprague Dawley Rats Exposed to Gasoline MTBE Vapor Condensate via Inhalation for 5 Days per Week for 4 Weeks

Female Sprague Dawley rats were administered vehicle control (air only) or Gasoline MTBE Vapor Condensate by inhalation via whole-body exposure for 5 days per week for 4 weeks. The positive control, cyclophosphamide, was administered i.p. on the last 4 days of exposure. On the day of sacrifice, spleens were placed in tubes containing media and sent to Richmond, VA, on ice for next day cell preparation. The rats were necropsied and indicated organs weighed. Values represent the mean  $\pm$  SE derived from the number of animals indicated in parentheses. H = homogeneous data and NH = non-homogeneous data using the Bartlett's Test for homogeneity. Homogeneous data were evaluated using a parametric analysis of variance. When significant differences occurred, exposed groups were compared to the vehicle control group using the Dunnett's t Test. The positive control was compared to the vehicle control using the Student's t Test. Values significantly different from vehicle control at p  $\leq$  0.05 are indicated by an asterisk, while those significant at p  $\leq$  0.01 are noted by a double asterisk. The Jonckheere's Test was used to test for exposure level-related trends among the vehicle and exposed groups.

# Body Weight (g) and Organ Weights (mg) in Female Sprague Dawley Rats Exposed to Gasoline MTBE Vapor Condensate via Inhalation for 5 Days per Week for 4 Weeks

| Repeat | Study |
|--------|-------|
|--------|-------|

| Parameter Vehicle         |                           |                           | oline MTBE Vapor          |                           | Cyclophosphamide              | H/NH Trend         |
|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|-------------------------------|--------------------|
|                           | (10)                      | 2000<br>(10)              | 10000<br>(10)             | 20000<br>(10)             | 50 mg/kg<br>(10)              | Analysis           |
| Body Wgt (g)              | 234.1 ± 3.3               | 228.5 ± 5.0               | 235.2 ± 3.7               | 234.2 ± 3.7               | 208.8 ± 5.3**                 | h ns               |
| Spleen (mg)<br>% Body Wgt | 589 ± 23<br>0.252 ± 0.012 | 563 ± 29<br>0.245 ± 0.009 | 544 ± 18<br>0.230 ± 0.007 | 587 ± 26<br>0.249 ± 0.010 | 236 ± 12**<br>0.113 ± 0.005** | H NS<br>H NS       |
| Thymus (mg)<br>% Body Wgt | 589 ± 30<br>0.251 ± 0.013 | 599 ± 15<br>0.264 ± 0.005 | 532 ± 22<br>0.227 ± 0.010 | 594 ± 54<br>0.254 ± 0.021 | 120 ± 9**<br>0.057 ± 0.003**  | NH NS<br>NH p≤0.05 |

Female Sprague Dawley rats were administered vehicle control (air only) or Gasoline MTBE Vapor Condensate by inhalation via whole-body exposure for 5 days per week for 4 weeks. The positive control, cyclophosphamide, was administered i.p. on the last 4 days of exposure. On the day of sacrifice, spleens were placed in tubes containing media and sent to Richmond, VA, on ice for next day cell preparation. The rats were necropsied and indicated organs weighed. Values represent the mean  $\pm$  SE derived from the number of animals indicated in parentheses. H = homogeneous data and NH = non-homogeneous data using the Bartlett's Test for homogeneity. Homogeneous data were evaluated using a parametric analysis of variance. When significant differences occurred, exposed groups were compared to the vehicle control group using the Dunnett's t Test. Non-homogeneous data were evaluated using a non-parametric analysis of variance. When significant differences occurred, exposed groups were compared to the vehicle control at p  $\leq$  0.05 are indicated by an asterisk, while those significant at p  $\leq$  0.01 are noted by a double asterisk. The Jonckheere's Test was used to test for exposure level-related trends among the vehicle and exposed groups.

- 92 L

Spleen Antibody-Forming Cell Response to T-dependent Antigen Sheep Erythrocytes in Female Sprague Dawley Rats Exposed to Gasoline MTBE Vapor Condensate via Inhalation for 5 Days per Week for 4 Weeks

| Exposure                | Body Wgt        | Spleen Wgt | Spleen Cells        | IgM AFC/                     | IgM AFC/Spleen       |
|-------------------------|-----------------|------------|---------------------|------------------------------|----------------------|
|                         | (g)             | (mg)       | (x10 <sup>7</sup> ) | 10 <sup>6</sup> Spleen Cells | (x 10 <sup>3</sup> ) |
| Vehicle                 | 251.5 ± 6.8     | 612 ± 36   | 67.33 ± 4.99        | 786 ± 199                    | 510 ± 121            |
|                         | (10)            | (10)       | (10)                | (10)                         | (10)                 |
| Gasoline MTBE Va        | • •             |            |                     |                              |                      |
| 2000 mg/m <sup>3</sup>  | 261.9 ± 5.7     | 596 ± 24   | 66.37 ± 3.71        | 316 ± 85                     | 202 ± 50             |
|                         | (10)            | (10)       | (10)                | (10)                         | (10)                 |
| 10000 mg/m <sup>3</sup> | $257.3 \pm 3.7$ | 623 ± 21   | 63.62 ± 2.76        | 784 ± 223                    | 488 ± 137            |
|                         | (10)            | (10)       | (10)                | (10)                         | (10)                 |
| 20000 mg/m <sup>3</sup> | $245.9 \pm 4.5$ | 574 ± 23   | 63.89 ± 2.67        | 898 ± 264                    | 581 ± 173            |
|                         | (10)            | (10)       | (10)                | (10)                         | (10)                 |
| Cyclophosphamide        | , ,             |            |                     |                              |                      |
| 50 mg/kg                | 234.3 ± 4.7     | 274 ± 10** | 69.42 ± 4.17        | 0 ± 0**                      | 0 ± 0**              |
|                         | (10)            | (10)       | (10)                | (10)                         | (10)                 |
| H/NH                    | н               | н          | Н                   | NH                           | NH                   |
| Trend Analysis          | NS              | NS         | NS                  | NS                           | NS                   |

Day 4 Response

Female Sprague Dawley rats were administered vehicle control (air only) or Gasoline MTBE Vapor Condensate by inhalation via whole-body exposure for 5 days per week for 4 weeks. The positive control, cyclophosphamide, was administered i.p. the last 4 days of exposure. Four days prior to sacrifice, the rats were immunized (iv) with  $2x10^8$  sRBC. On the day of sacrifice, spleens were placed in tubes containing media and sent to Richmond, VA, on ice for next day cell preparation. Spleens were prepared into single cell suspensions and the number of IgM sRBC antibody-forming cells was determined. Values represent the mean  $\pm$  SE derived from the number of animals indicated in parentheses. H = homogeneous data and NH = non-homogeneous data using the Bartlett's Test for homogeneity. Homogeneous data were evaluated using a parametric analysis of variance. When significant differences occurred, exposed groups were compared to the vehicle control group using the Dunnett's t Test. Non-homogeneous data were evaluated using a non-parametric analysis of variance. When significant differences occurred, exposed groups were compared to the vehicle control group using the Wilcoxon Rank Test. The positive control was compared to the vehicle control group using the Wilcoxon Rank Test. The positive control was compared to the vehicle control using the Student's t Test. Values significantly different from vehicle control at  $p \le 0.05$  are indicated by an asterisk, while those significant at  $p \le 0.01$  are noted by a double asterisk. The Jonckheere's Test was used to test for exposure level-related trends among the vehicle and exposed groups.

# Spleen Antibody-Forming Cell Response to T-dependent Antigen Sheep Erythrocytes in Female Sprague Dawley Rats Exposed to Gasoline MTBE Vapor Condensate via Inhalation for 5 Days per Week for 4 Weeks Day 4 Response

Dava ant Church

| Repeat Study            |               |            |                     |                              |                      |  |  |  |  |  |
|-------------------------|---------------|------------|---------------------|------------------------------|----------------------|--|--|--|--|--|
| Exposure                | Body Wgt      | Spleen Wgt | Spleen Cells        | IgM AFC/                     | IgM AFC/Spleen       |  |  |  |  |  |
|                         | (g)           | (mg)       | (x10 <sup>7</sup> ) | 10 <sup>6</sup> Spleen Cells | (x 10 <sup>3</sup> ) |  |  |  |  |  |
| Vehicle                 | 234.1 ± 3.3   | 589 ± 23   | 74.62 ± 4.09        | 363 ± 60                     | 284 ± 57             |  |  |  |  |  |
|                         | (10)          | (10)       | (10)                | (10)                         | (10)                 |  |  |  |  |  |
| Gasoline MTBE Va        | apor          |            |                     |                              |                      |  |  |  |  |  |
| 2000 mg/m <sup>3</sup>  | 228.5 ± 5.0   | 563 ± 29   | 66.49 ± 4.12        | 275 ± 77                     | 179 ± 48             |  |  |  |  |  |
|                         | (10)          | (10)       | (10)                | (10)                         | (10)                 |  |  |  |  |  |
| 10000 mg/m <sup>3</sup> | 235.2 ± 3.7   | 544 ± 18   | 64.38 ± 3.14        | 266 ± 92                     | 185 ± 71             |  |  |  |  |  |
|                         | (10)          | (10)       | (10)                | (10)                         | (10)                 |  |  |  |  |  |
| 20000 mg/m3             | 234.2 ± 3.7   | 587 ± 26   | 64.82 ± 3.11        | 386 ± 212                    | 224 ± 107            |  |  |  |  |  |
|                         | (10)          | (10)       | (10)                | (10)                         | (10)                 |  |  |  |  |  |
| Cyclophosphamid         |               |            |                     |                              |                      |  |  |  |  |  |
| 50 mg/kg                | 208.8 ± 5.3** | 236 ± 12** | 13.39 ± 1.00**      | 18 ± 16**                    | 2 ± 1**              |  |  |  |  |  |
|                         | (10)          | (10)       | (10)                | (10)                         | (10)                 |  |  |  |  |  |
| H/NH                    | н             | H          | Н                   | NH                           | H                    |  |  |  |  |  |
| Trend Analysis          | NS            | NS         | NS                  | p ≤ 0.05                     | p ≤ 0.05             |  |  |  |  |  |

Female Sprague Dawley rats were administered vehicle control (air only) or Gasoline MTBE Vapor Condensate by inhalation via whole-body exposure for 5 days per week for 4 weeks. The positive control, cyclophosphamide, was administered i.p. the last 4 days of exposure. Four days prior to sacrifice, the rats were immunized (iv) with  $2x10^8$  sRBC. On the day of sacrifice, spleens were placed in tubes containing media. Spleens were sent to Richmond, VA, on ice the following day. Spleens were prepared into single cell suspensions and the number of IgM sRBC antibody-forming cells was determined 2 days after sacrifice. Values represent the mean  $\pm$  SE derived from the number of animals indicated in parentheses. H = homogeneous data and NH = non-homogeneous data using the Bartlett's Test for homogeneous data were evaluated using a parametric analysis of variance. When significant differences occurred, exposed groups were compared to the vehicle control group using the Dunnett's t Test. Nonhomogeneous data were evaluated using a non-parametric analysis of variance. When significant differences occurred, exposed groups were compared to the vehicle control group using the Wilcoxon Rank Test. The positive control was compared to the vehicle control group using the Wilcoxon Rank Test. The positive control was compared to the vehicle control group using the Wilcoxon Rank Test. The positive control at  $p \le 0.05$  are indicated by an asterisk, while those significant at  $p \le 0.01$  are noted by a double asterisk. The Jonckheere's Test was used to test for exposure level-related trends among the vehicle and exposed groups.

# APPENDIX B - INDIVIDUAL ANIMAL DATA

INDIVIDUAL ANIMAL DATA ORGAN WEIGHTS GASOLINE MTBE VAPOR CONDENSATE HLS STUDY NO.: 00-6126 SPONSOR STUDY NO.: 211-MTBE-S

| ANIMAL NO    | GROUP        | DOSE                                                   | SEX    | BODY WGT (G)   | SPLEEN (MG) | THYMUS (MG) | SPLEEN /% BODY WT | THYMUS /% BODY WT | COMMENTS |
|--------------|--------------|--------------------------------------------------------|--------|----------------|-------------|-------------|-------------------|-------------------|----------|
| 1531         | GI           | AIR ONLY                                               | F      | 284.5          | 550         | 504         | 0.190             | 0.180             |          |
| 1532         | Gl           | AIR ONLY                                               | F      | 258.5          | 592         | 596         | 0.230             | 0.230             |          |
| 1533         | Gl           | AIR ONLY                                               | F      | 250.0          | 521         | 675         | 0.210             | 0.270             |          |
| 1534         | GI           | AIR ONLY                                               | F      | 219.6          | 585<br>577  | 444<br>620  | 0.270<br>0.220    | 0.200<br>0.230    |          |
| 1535<br>1536 | GI<br>GI     | AIR ONLY<br>AIR ONLY                                   | -      | 263.9<br>233.7 | 548         | 597         | 0.220             | 0.250             |          |
| 1536         | GI           |                                                        | г<br>с | 233.7<br>224.7 | 584         | 534         | 0.260             | 0.240             |          |
| 1538         | GI           | AIR ONLY                                               | F      | 270.2          | 759         | 641         | 0.280             | 0.240             |          |
| 1539         | GI           | AIR ONLY                                               | Ē      | 270.1          | 877         | 863         | 0.320             | 0.320             |          |
| 1540         | GI           | AIR ONLY                                               | F      | 239.6          | 530         | 670         | 0.220             | 0.280             |          |
| 2521         | GI           | 2.000 MG/M <sup>3</sup> GASOLINE MTBE VAPOR            | F      | 249.9          | 741         | 692         | 0.300             | 0.280             |          |
| 2522         | GII          | 2.000 MG/M <sup>3</sup> GASOLINE MTBE VAPOR            | F      | 244.7          | 580         | 390         | 0.240             | 0.160             |          |
| 2523         | GII          | 2,000 MG/M <sup>3</sup> GASOLINE MTBE VAPOR            | F      | 269.7          | 523         | 583         | 0.190             | 0.220             |          |
| 2524         | GII          | 2,000 MG/M <sup>3</sup> GASOLINE MTBE VAPOR            | F      | 257.6          | 512         | 533         | 0.200             | 0.210             |          |
| 2525         | GII          | 2,000 MG/M <sup>3</sup> GASOLINE MTBE VAPOR            | F      | 278.2          | 544         | 506         | 0.200             | 0.180             |          |
| 2526         | GII          | 2.000 MG/M <sup>3</sup> GASOLINE MTBE VAPOR            | F      | 257.3          | 699         | 640         | 0.270             | 0.250             |          |
| 2527         | GII          | 2,000 MG/M <sup>3</sup> GASOLINE MTBE VAPOR            | F      | 281.7          | 577         | 638         | 0.200             | 0.230             |          |
| 2528         | GI           | 2,000 MG/M <sup>3</sup> GASOLINE MTBE VAPOR            | F      | 226.6          | 544         | 444         | 0.240             | 0.200             |          |
| 2529         | GII          | 2,000 MG/M <sup>3</sup> GASOLINE MTBE VAPOR            | F      | 279.3          | 640         | 513         | 0.230             | 0.180             |          |
| 2530         | GII          | 2.000 MG/M <sup>3</sup> GASOLINE MTBE VAPOR            | F      | 274.4          | 604         | 610         | 0.220             | 0.220             |          |
| 3521         | GII          | 10,000 MG/M <sup>3</sup> GASOLINE MTBE VAPOR           | F      | 254.7          | 622         | 486         | 0.240             | 0.190             |          |
| 3522         | GIII         | 10,000 MG/M <sup>3</sup> GASOLINE MTBE VAPOR           | F      | 241.4          | 655         | 553         | 0.270             | 0.230             |          |
| 3523         | GII          | 10,000 MG/M <sup>3</sup> GASOLINE MTBE VAPOR           | Ē      | 266.0          | 677         | 674         | 0.250             | 0.250             |          |
| 3523         | GIII         | 10,000 MG/M <sup>3</sup> GASOLINE MTBE VAPOR           | г<br>- | 257.7          | 571         | 469         | 0.220             | 0.180             |          |
| 3525         | GIII         | 10,000 MG/M <sup>3</sup> GASOLINE MTBE VAPOR           | г<br>с | 241.4          | 499         | 591         | 0.210             | 0.240             |          |
| 3525         | GIII         | 10,000 MG/M GASOLINE MTBE VAPOR                        | r -    | 268.5          | 578         | 602         | 0.220             | 0.220             |          |
|              |              | 10,000 MG/M <sup>3</sup> GASOLINE MTBE VAPOR           | F      | 274.9          | 734         | 548         | 0.270             | 0.200             |          |
| 3527<br>3528 | GIII<br>GIII | 10,000 MG/M <sup>3</sup> GASOLINE MTBE VAPOR           | Ę      | 256.2          | 658         | 503         | 0.260             | 0.200             |          |
|              |              | 10,000 MG/M <sup>3</sup> GASOLINE MTBE VAPOR           | F      | 246.7          | 644         | 503         | 0.260             | 0.210             |          |
| 3529         | GIII         |                                                        | r      | 265.2          |             | 505         | 0.220             | 0.190             |          |
| 3530         | GIII         | 10,000 MG/M <sup>3</sup> GASOLINE MTBE VAPOR           | ۳<br>ح |                | 594         |             | 0.230             | 0.200             |          |
| 4531         | GI∨          | 20,000 MG/M <sup>3</sup> GASOLINE MTBE VAPOR           | -      | 244.8          | 556         | 490         |                   |                   |          |
| 4532         | GI∨          | 20,000 MG/M <sup>3</sup> GASOLINE MTBE VAPOR           | F      | 238.6          | 488         | 358         | 0.200             | 0.150             |          |
| 4533         | GIV          | 20,000 MG/M <sup>3</sup> GASOLINE MTBE VAPOR           | F      | 246.8          | 649         | 589         | 0.260             | 0.240             |          |
| 4534         | GIV          | 20,000 MG/M <sup>3</sup> GASOLINE MTBE VAPOR           | F      | 249.2          | 534         | 462         | 0.210             | 0.190             |          |
| 4535         | GIV          | 20,000 MG/M <sup>3</sup> GASOLINE MTBE VAPOR           | F      | 251.3          | 480         | 520         | 0.190             | 0.210             |          |
| 4536         | GIV          | 20,000 MG/M <sup>3</sup> GASOLINE MTBE VAPOR           | F      | 223.3          | 552         | 593         | 0.250             | 0.270             |          |
| 4537         | GIV          | 20,000 MG/M <sup>3</sup> GASOLINE MTBE VAPOR           | F      | 248.4          | 594         | 484         | 0.240             | 0.190             |          |
| 4538         | GIV          | 20,000 MG/M <sup>3</sup> GASOLINE MTBE VAPOR           | F      | 259.0          | 664         | 578         | 0.260             | 0.220             |          |
| 4539         | GIV          | 20,000 MG/M <sup>3</sup> GASOLINE MTBE VAPOR           | F      | 270.9          | 682         | 508         | 0.250             | 0.190             |          |
| 4540         | GIV          | 20,000 MG/M <sup>3</sup> GASOLINE MTBE VAPOR           | F      | 226.4          | 536         | 557         | 0.240             | 0.250             |          |
| 5531         | GV           | 50 MG/KG CYCLOPHOSPHAMIDE                              | F      | 231.3          | 221         | 174         | 0.100             | 0.080             |          |
| 5532         | GV           | 50 MG/KG CYCLOPHOSPHAMIDE                              | F      | 235.5          | 290         | 136         | 0.120             | 0.060             |          |
| 5533         | GV           | 50 MG/KG CYCLOPHOSPHAMIDE                              | F      | 221.1          | 249         | 95          | 0.110             | 0.040<br>0.050    |          |
| 5534<br>5535 | G∨<br>G∨     | 50 MG/KG CYCLOPHOSPHAMIDE<br>50 MG/KG CYCLOPHOSPHAMIDE | F      | 256.6<br>219.6 | 285<br>260  | 120<br>157  | 0.110<br>0.120    | 0.050             |          |
| 5536         | GV           | 50 MG/KG CYCLOPHOSPHAMIDE<br>50 MG/KG CYCLOPHOSPHAMIDE | Ē      | 255.9          | 333         | 135         | 0.130             | 0.050             |          |
| 5537         | GV           | 50 MG/KG CYCLOPHOSPHAMIDE                              | F      | 217.0          | 266         | 112         | 0.120             | 0.050             |          |
| 5538         | GV           | 50 MG/KG CYCLOPHOSPHAMIDE                              | Ē      | 224.3          | 268         | 118         | 0.120             | 0.050             |          |
| 5539         | GV           | 50 MG/KG CYCLOPHOSPHAMIDE                              | F      | 233.5          | 260         | 106         | 0.110             | 0.050             |          |
|              | GV           | 50 MG/KG CYCLOPHOSPHAMIDE                              | F      | 247,9          | 311         | 132         | 0.130             | 0.050             |          |

Page 1242

INDIVIDUAL ANIMAL DATA ORGAN WEIGHTS GASOLINE MTBE VAPOR CONDENSATE HLS STUDY NO.: 00-6126 (REPEAT) SPONSOR STUDY NO.: 211-MTBE-S

| RAT NO | GROUP | DOSE                                                               | SEX    | BODY WGT (G) | SPLEEN (MG) | THYMUS (MG) | SPLEEN /% BODY WT | THYMUS /% BODY WT | COMMENT |
|--------|-------|--------------------------------------------------------------------|--------|--------------|-------------|-------------|-------------------|-------------------|---------|
| 1546   | GI    | AIR ONLY                                                           | F      | 227.9        | 705         | 592         | 0.310             | 0.260             |         |
| 1547   | GI    | AIR ONLY                                                           | F      | 239.2        | 615         | 509         | 0.260             | 0.210             |         |
| 1548   | GI    | AIR ONLY                                                           | F      | 227.2        | 669         | 567         | 0.290             | 0.250             |         |
| 1549   | GI    | AIR ONLY                                                           | F      | 244.0        | 516         | 696         | 0.210             | 0.290             |         |
| 1550   | GI    | AIR ONLY                                                           | F      | 221.7        | 613         | 733         | 0.280             | 0.330             |         |
| 1551   | G     | AIR ONLY                                                           | F      | 237.4        | 568         | 572         | 0.240             | 0.240             |         |
| 1552   | GI    | AIR ONLY                                                           | F      | 226.4        | 640         | 404         | 0.280             | 0.180             |         |
| 1553   | GI    | AIR ONLY                                                           | F      | 220.9        | 493         | 530         | 0.220             | 0.240             |         |
| 1554   | G     | AIR ONLY                                                           | F      | 249.1        | 574         | 632         | 0.230             | 0.250             |         |
| 1555   | GI    | AIR ONLY                                                           | F      | 246.9        | 494         | 650         | 0.200             | 0.260             |         |
| 2536   | GI    | 2,000 MG/M3 GASOLINE MTBE VAPOR                                    | Ē      | 219.2        | 598         | 656         | 0.270             | 0.300             |         |
| 2537   | GII   | 2,000 MG/M3 GASOLINE MTBE VAPOR                                    | Ē      | 237.9        | 699         | 584         | 0.290             | 0.250             |         |
| 2538   | GII   | 2,000 MG/M3 GASOLINE MTBE VAPOR                                    | Ē      | 233.4        | 489         | 634         | 0.210             | 0.270             |         |
|        | GII   | 2,000 MG/M3 GASOLINE MTBE VAPOR                                    | Ē      | 214.0        | 444         | 533         | 0.210             | 0.250             |         |
| 2539   |       | 2,000 MG/M3 GASOLINE MTBE VAPOR<br>2,000 MG/M3 GASOLINE MTBE VAPOR | Ľ.     | 246.8        | 681         | 607         | 0.280             | 0.250             |         |
| 2540   | GII   |                                                                    |        | 250.1        | 647         | 641         | 0.260             | 0.260             |         |
| 2541   | GII   | 2,000 MG/M3 GASOLINE MTBE VAPOR                                    |        | 222.0        | 490         | 575         | 0.220             | 0.260             |         |
| 2542   | GII   | 2,000 MG/M3 GASOLINE MTBE VAPOR                                    | -      | 232.5        | 535         | 605         | 0.230             | 0.260             |         |
| 2543   | GII   | 2,000 MG/M3 GASOLINE MTBE VAPOR                                    | -      |              | 577         | 640         | • 0.250           | 0.280             |         |
| 2544   | GII   | 2,000 MG/M3 GASOLINE MTBE VAPOR                                    | F      | 230.9        |             | 519         | 0:230             | 0.260             |         |
| 2545   | GII   | 2,000 MG/M3 GASOLINE MTBE VAPOR                                    | F      | 197.9        | 465         |             | 0.230             | 0.260             |         |
| 3536   | GIII  | 10,000 MG/M3 GASOLINE MTBE VAPOR                                   | F      | 235.5        | 546         | 618         |                   |                   |         |
| 3537   | GIII  | 10,000 MG/M3 GASOLINE MTBE VAPOR                                   | F      | 228.6        | 602         | 679         | 0.260             | 0.300             |         |
| 3538   | GIII  | 10,000 MG/M3 GASOLINE MTBE VAPOR                                   | F      | 219.9        | 461         | 507         | 0.210             | 0.230             |         |
| 3539   | GIII  | 10,000 MG/M3 GASOLINE MTBE VAPOR                                   | F      | 237.5        | 483         | 457         | 0.200             | 0.190             |         |
| 3540   | GIII  | 10,000 MG/M3 GASOLINE MTBE VAPOR                                   | , F    | 241.0        | 642         | 546         | 0.270             | 0.230             |         |
| 3541   | GIII  | 10,000 MG/M3 GASOLINE MTBE VAPOR                                   | F      | 238.9        | 536         | 548         | 0.220             | 0.230             |         |
| 3542   | GIII  | 10,000 MG/M3 GASOLINE MTBE VAPOR                                   | F      | 215.7        | 528         | 452         | 0.240             | 0.210             |         |
| 3543   | GIII  | 10,000 MG/M3 GASOLINE MTBE VAPOR                                   | F      | 246.6        | 524         | 489         | 0.210             | 0.200             |         |
| 3544   | GIII  | 10,000 MG/M3 GASOLINE MTBE VAPOR                                   | F      | 234.5        | 521         | 494         | 0.220             | 0.210             |         |
| 3545   | GIII  | 10,000 MG/M3 GASOLINE MTBE VAPOR                                   | F      | 254.2        | 601         | 534         | 0.240             | 0.210             |         |
| 4546   | GIV   | 20,000 MG/M3 GASOLINE MTBE VAPOR                                   | F      | 247.6        | 677         | 546         | 0.270             | 0.220             |         |
| 4547   | GIV   | 20,000 MG/M3 GASOLINE MTBE VAPOR                                   | F      | 235.7        | 591         | 513         | 0.250             | 0.220             |         |
| 4548   | GIV   | 20,000 MG/M3 GASOLINE MTBE VAPOR                                   | F      | 236.3        | 502         | 635         | 0.210             | 0.270             |         |
| 4549   | GIV   | 20,000 MG/M3 GASOLINE MTBE VAPOR                                   | F      | 242.2        | 684         | 946         | 0.280             | 0.390             |         |
| 4550   | GIV   | 20,000 MG/M3 GASOLINE MTBE VAPOR                                   | F      | 233.7        | 524         | 498         | 0.220             | 0.210             |         |
|        | GIV   | 20,000 MG/M3 GASOLINE MTBE VAPOR                                   | F      | 242.9        | 542         | 526         | 0.220             | 0.220             |         |
| 4551   | GIV   | 20,000 MG/M3 GASOLINE MTBE VAPOR                                   | Ē      | 229.2        | 613         | 430         | 0.270             | 0.190             |         |
| 4552   |       | 20,000 MG/M3 GASOLINE MTBE VAPOR                                   | 5      | 204.9        | 508         | 467         | 0.250             | 0.230             |         |
| 4553   | GIV   |                                                                    | Ē      | 232.8        | 511         | 529         | 0.220             | 0.230             |         |
| 4554   | GIV   | 20,000 MG/M3 GASOLINE MTBE VAPOR                                   | 5      | 236.6        | 716         | 850         | 0.300             | 0.360             |         |
| 4555   | GIV   | 20,000 MG/M3 GASOLINE MTBE VAPOR                                   | 5      | 184.3        | 190         | 107         | 0.100             | 0.060             |         |
| 5546   | GV    | 50 MG/KG CYCLOPHOSPHAMIDE                                          | F<br>7 | 235.8        | 223         | 142         | 0.090             | 0.060             |         |
| 5547   | GV    | 50 MG/KG CYCLOPHOSPHAMIDE                                          | -      |              |             | 151         | 0.140             | 0.070             |         |
| 5548   | GV    | 50 MG/KG CYCLOPHOSPHAMIDE                                          | F      | 211.8        | 286         |             |                   | 0.050             |         |
| 5549   | GV    | 50 MG/KG CYCLOPHOSPHAMIDE                                          | F      | 209.8        | 252         | 112         | 0.120             | 0.050             |         |
| 5550   | GV    | 50 MG/KG CYCLOPHOSPHAMIDE                                          | F      | 208.2        | 219         | 105         | 0.110             |                   |         |
| 5551   | GV    | 50 MG/KG CYCLOPHOSPHAMIDE                                          | F      | 190.2        | 183         | 73          | 0.100             | 0.040             |         |
| 5552   | GV    | 50 MG/KG CYCLOPHOSPHAMIDE                                          | F      | 199.0        | 239         | 94          | 0.120             | 0.050             |         |
| 5553   | GV    | 50 MG/KG CYCLOPHOSPHAMIDE                                          | F      | 229.8        | 252         | 172         | 0.110             | 0.070             |         |
| 5554   | GV    | 50 MG/KG CYCLOPHOSPHAMIDE                                          | F      | 221.6        | 294         | 111         | 0.130             | 0.050             |         |
| 5555   | GV    | 50 MG/KG CYCLOPHOSPHAMIDE                                          | -      | 197.1        | 222         | 136         | 0.110             | 0.070             |         |

e generation

# INDIVIDUAL ANIMAL DATA ORGAN WEIGHTS GASOLINE MTBE VAPOR CONDENSATE HLS STUDY NO.: 00-6126 (2ND REPEAT) SPONSOR STUDY NO.: 211-MTBE-S

and a second second

| ANIMAL NO    | GROUP    | DOSE                                         | SEX    | BODY WGT (G)   | SPLEEN (MG) | THYMUS (MG) | SPLEEN /% BODY WT | THYMUS /% BODY WT | COMMEN |
|--------------|----------|----------------------------------------------|--------|----------------|-------------|-------------|-------------------|-------------------|--------|
| 1581         | GI       | AIR ONLY                                     | F      | 246.5          | 732         | 667         | 0.300             | 0.270<br>0.210    |        |
| 1582         | GI       | AIR ONLY                                     | F      | 217.9          | 516         | 466         | 0.240             | 0.320             |        |
| 1583         | GI       | AIR ONLY                                     | F      | 266.0          | 708         | 847         | 0.270             | 0.320             |        |
| 1584         | GI       | AIR ONLY                                     | F      | 252.0          | 633         | 607         | 0.250<br>0.290    | 0.320             |        |
| 1585         | GI       | AIR ONLY                                     | F      | 257.6          | 749         | 812<br>799  | 0.320             | 0.330             |        |
| 1586         | GI       | AIR ONLY                                     | F      | 240.1          | 780<br>692  | 1065        | 0.240             | 0.380             |        |
| 1587         | Gl       | AIR ONLY                                     | -      | 282.6<br>239.8 | 538         | 638         | 0.220             | 0.270             |        |
| 1588         | GI       | AIR ONLY                                     | F      | 256.6          | 670         | 681         | 0.260             | 0.270             |        |
| 1589         | GI       | AIR ONLY<br>AIR ONLY                         | г<br>с | 223.6          | 445         | 607         | 0.200             | 0.270             |        |
| 1590         | GI       | 2,000 MG/M <sup>3</sup> GASOLINE MTBE VAPOR  |        | 240,7          | 674         | 780         | 0.280             | 0.320             |        |
| 2581         | GII      |                                              | F      | 262.3          | 538         | 805         | 0.210             | 0.310             |        |
| 2582         | Gli      | 2,000 MG/M <sup>3</sup> GASOLINE MTBE VAPOR  | F      | 264.3          | 759         | 966         | 0.290             | 0.370             |        |
| 2583         | GII      | 2,000 MG/M <sup>3</sup> GASOLINE MTBE VAPOR  |        |                | 505         | 717         | 0.190             | 0.270             |        |
| 2584         | GII      | 2,000 MG/M <sup>3</sup> GASOLINE MTBE VAPOR  | F      | 262.2          |             |             | 0.260             | 0.250             |        |
| 2585         | GII      | 2,000 MG/M <sup>3</sup> GASOLINE MTBE VAPOR  | F      | 263.3          | 690         | 658         |                   | 0.210             |        |
| 2586         | Gli      | 2,000 MG/M <sup>3</sup> GASOLINE MTBE VAPOR  | F      | 244.4          | 657         | 517         | 0.270             |                   |        |
| 2587         | GII      | 2,000 MG/M <sup>3</sup> GASOLINE MTBE VAPOR  | F      | 247.8          | 462         | 749         | 0.190             | 0.300             |        |
| 2588         | GII      | 2,000 MG/M <sup>3</sup> GASOLINE MTBE VAPOR  | F      | 248.3          | 604         | 900         | 0.240             | 0.360             |        |
| 2589         | GI       | 2,000 MG/M <sup>3</sup> GASOLINE MTBE VAPOR  | F      | 267.1          | 799         | 823         | 0.300             | 0.310             |        |
| 2590         | GII      | 2,000 MG/M <sup>3</sup> GASOLINE MTBE VAPOR  | F      | 268.3          | 677         | 835         | 0.250             | 0.310             |        |
| 3581         | GIII     | 10,000 MG/M <sup>3</sup> GASOLINE MTBE VAPOR | F      | 277.0          | 722         | 650         | 0.260             | 0.230             |        |
| 3582         | GIII     | 10,000 MG/M <sup>3</sup> GASOLINE MTBE VAPOR | F      | 229.5          | 565         | 835         | 0.250             | 0.360             |        |
| 3583         | GIII     | 10,000 MG/M <sup>3</sup> GASOLINE MTBE VAPOR | F      | 226.4          | 537         | 639         | 0.240             | 0.280             |        |
|              |          | 10,000 MG/M <sup>3</sup> GASOLINE MTBE VAPOR | E      | 236.7          | 484         | 652         | 0.200             | 0.280             |        |
| 3584         | GIII     | 10,000 MG/M <sup>3</sup> GASOLINE MTBE VAPOR | ċ      | 228.3          | 557         | 813         | 0.240             | 0.360             |        |
| 3585         | GIII     |                                              |        | 217.4          | 501         | 482         | 0.230             | 0.220             |        |
| 3586         | GIII     | 10,000 MG/M <sup>3</sup> GASOLINE MTBE VAPOR | F      | 269.4          | 559         | 893         | 0.210             | 0.330             |        |
| 3587         | GIII     | 10,000 MG/M <sup>3</sup> GASOLINE MTBE VAPOR |        |                | 521         | 730         | 0.200             | 0.280             |        |
| 3588         | GIII     | 10,000 MG/M <sup>3</sup> GASOLINE MTBE VAPOR | F      | 261.9          |             | 795         | 0.290             | 0.320             |        |
| 3589         | Gill     | 10,000 MG/M <sup>3</sup> GASOLINE MTBE VAPOR | F      | 247.8          | 708         |             | 0.250             | 0.320             |        |
| 3590         | GIII     | 10,000 MG/M <sup>3</sup> GASOLINE MTBE VAPOR | F      | 231.0          | 588         | 730         |                   | 0.290             |        |
| 4581         | GIV      | 20,000 MG/M <sup>3</sup> GASOLINE MTBE VAPOR | F      | 237.0          | 544         | 676         | 0.230             | 0.290             |        |
| 4582         | GIV      | 20,000 MG/M <sup>3</sup> GASOLINE MTBE VAPOR | ۶      | 213.0          | 494         | 655         | 0.230             |                   |        |
| 4583         | GIV      | 20,000 MG/M <sup>3</sup> GASOLINE MTBE VAPOR | F      | 271.6          | 568         | 689         | 0.210             | 0.250             |        |
| 4584         | GIV      | 20,000 MG/M <sup>3</sup> GASOLINE MTBE VAPOR | F      | 263.6          | 626         | 669         | 0.240             | 0.250             |        |
| 4585         | GIV      | 20,000 MG/M <sup>3</sup> GASOLINE MTBE VAPOR | F      | 265.6          | 584         | 728         | 0.220             | 0.270             |        |
| 4586         | GIV      | 20,000 MG/M <sup>3</sup> GASOLINE MTBE VAPOR | F      | 289.7          | 922         | 870         | 0.320             | 0.300             |        |
| 4587         | GIV      | 20,000 MG/M <sup>3</sup> GASOLINE MTBE VAPOR | F      | 227.0          | 589         | 712         | 0.260             | 0.310             |        |
| 4588         | GIV      | 20,000 MG/M <sup>3</sup> GASOLINE MTBE VAPOR | F      | 255.6          | 722         | 796         | 0.280             | 0.310             |        |
|              |          | 20,000 MG/M <sup>3</sup> GASOLINE MTBE VAPOR | F      | 265.9          | 625         | 648         | 0.240             | 0.240             |        |
| 4589         | GIV      | 20,000 MG/M <sup>3</sup> GASOLINE MTBE VAPOR |        | 259.3          | 833         | 1083        | 0.320             | 0.420             |        |
| 4590         | GIV      | 50 MG/KG CYCLOPHOSPHAMIDE                    | 5      | 203.0          | 216         | 159         | 0.110             | 0.080             |        |
| 5581         | GV       | 50 MG/KG CYCLOPHOSPHAMIDE                    | Ē      | 210.0          | 198         | 157         | 0.090             | 0.070             |        |
| 5582         | GV<br>GV | 50 MG/KG CYCLOPHOSPHAMIDE                    | ,<br>F | 238.0          | 243         | 214         | 0.100             | 0.090             |        |
| 5583<br>5584 | GV<br>GV | 50 MG/KG CYCLOPHOSPHAMIDE                    | F      | 202.5          | 282         | 168         | 0.140             | 0.080             |        |
| 5584<br>5585 | GV       | 50 MG/KG CYCLOPHOSPHAMIDE                    | F      | 234.5          | 342         | 161         | 0.150             | 0.070             |        |
| 5586         | GV       | 50 MG/KG CYCLOPHOSPHAMIDE                    | F      | 219.5          | 294         | 181         | 0.130             | 0.080             |        |
| 5587         | GV       | 50 MG/KG CYCLOPHOSPHAMIDE                    | F      | 249.7          | 264         | 304         | 0.110             | 0.120             |        |
| 5588         | GV       | 50 MG/KG CYCLOPHOSPHAMIDE                    | F      | 203.4          | 272         | 165         | 0.130             | 0.080             |        |
| 5589         | GV       | 50 MG/KG CYCLOPHOSPHAMIDE                    | F      | 264.3          | 345         | 230         | 0.130             | 0.090             |        |
| 5590         | ĞV       | 50 MG/KG CYCLOPHOSPHAMIDE                    | F      | 288.0          | 374         | 224         | 0.130             | 0.080             |        |

#### INDIVIDUAL ANIMAL DATA AFC GASOLINE MTBE VAPOR CONDENSATE HLS STUDY NO.: 00-6126 SPONSOR STUDY NO.: 211-MTBE-S

| ANIMAL NO    | GROUP    | DOSE                                         | SEX    | IGM AFC/106 SP.C. | IGM AFC/SPLEEN 103 | CELLS/SPLEEN x 107 | SPLEEN WEIGHT (MG) | BODY WEIGHT (G)<br>284.5 | COMMENT |
|--------------|----------|----------------------------------------------|--------|-------------------|--------------------|--------------------|--------------------|--------------------------|---------|
| 1531         | GI       | AIR ONLY                                     | F      | 50                | 30                 | 59.82              | 550                | 258.5                    |         |
| 1532         | Gl       | AIR ONLY                                     | F      | 169               | 108                | 63.96              | 592                | 250.0                    |         |
| 1533         | GI       | AIR ONLY                                     | F      | 738               | 411                | 55.68              | 521<br>585         | 219.6                    |         |
| 1534         | GI       | AIR ONLY                                     | F      | 1014              | 576                | 56.82<br>63.96     | 577                | 263.9                    |         |
| 1535         | GI       | AIR ONLY                                     | F      | 1126              | 720                | 62.10              | 548                | 233.7                    |         |
| 1536         | GI       | AIR ONLY                                     | F      | 2275              | 1413<br>477        | 59.46              | 584                | 224.7                    |         |
| 1537         | GI       | AIR ONLY                                     | F      | 802               | 288                | 72.84              | 759                | 270.2                    |         |
| 1538         | GI       | AIR ONLY                                     | F      | 395<br>457        | 501                | 109.62             | 877                | 270.1                    |         |
| 1539         | GI       | AIR ONLY                                     | F      | 830               | 573                | 69.06              | 530                | 239.6                    |         |
| 1540         | GI       | AIR ONLY                                     | г<br>г |                   | 150                | 94.44              | 741                | 249.9                    |         |
| 2521         | GII      | 2,000 MG/M <sup>3</sup> GASOLINE MTBE VAPOR  | F      | 159               | 345                | 59.34              | 580                | 244.7                    |         |
| 2522         | Gli      | 2,000 MG/M <sup>3</sup> GASOLINE MTBE VAPOR  | F      | 581               |                    |                    | 523                | 269.7                    |         |
| 2523         | GII      | 2,000 MG/M <sup>3</sup> GASOLINE MTBE VAPOR  | F      | 938               | 567                | 60.42              |                    | 257.6                    |         |
| 2524         | GII      | 2,000 MG/M <sup>3</sup> GASOLINE MTBE VAPOR  | F      | 457               | 303                | 66.30              | 512                |                          |         |
| 2525         | GII      | 2,000 MG/M <sup>3</sup> GASOLINE MTBE VAPOR  | F      | 169               | 120                | 71.04              | 544                | 278.2                    |         |
| 2526         | Gli      | 2,000 MG/M <sup>3</sup> GASOLINE MTBE VAPOR  | F      | 146               | 111                | 76.08              | 699                | 257.3                    |         |
|              | GIL      | 2,000 MG/M <sup>3</sup> GASOLINE MTBE VAPOR  | F      | 249               | 153                | 61.44              | 577                | 281.7                    |         |
| 2527         |          | 2,000 MG/M GASOLINE MTBE VAPOR               | F      | 105               | 57                 | 54.42              | 544                | 226.6                    |         |
| 2528         | GII      |                                              | F      | 234               | 144                | 61.56              | 640                | 279.3                    |         |
| 2529         | GII      | 2,000 MG/M <sup>3</sup> GASOLINE MTBE VAPOR  | Ę      | 123               | 72                 | 58.62              | 604                | 274.4                    |         |
| 2530         | GII      | 2,000 MG/M <sup>3</sup> GASOLINE MTBE VAPOR  | r      |                   | 282                | 70.26              | 622                | 254.7                    |         |
| 3521         | GIII     | 10,000 MG/M <sup>3</sup> GASOLINE MTBE VAPOR | F      | 401               | 300                | 68.88              | 655                | 241.4                    |         |
| 3522         | GIII     | 10,000 MG/M <sup>3</sup> GASOLINE MTBE VAPOR | F      | 436               |                    | 70.68              | 677                | 266.0                    |         |
| 3523         | GIII     | 10,000 MG/M <sup>3</sup> GASOLINE MTBE VAPOR | F      | 267               | 189                |                    |                    | 257.7                    |         |
| 3524         | GIII     | 10,000 MG/M <sup>3</sup> GASOLINE MTBE VAPOR | F      | 1710              | 993                | 58.08              | 571                | 241.4                    |         |
| 3525         | GIII     | 10,000 MG/M <sup>3</sup> GASOLINE MTBE VAPOR | F      | 496               | 234                | 47.16              | 499                |                          |         |
| 3526         | GIII     | 10,000 MG/M <sup>3</sup> GASOLINE MTBE VAPOR | F      | 63                | 39                 | 62.22              | 578                | 268.5                    |         |
| 3527         | GIII     | 10,000 MG/M <sup>3</sup> GASOLINE MTBE VAPOR | F      | 395               | 306                | 77.40              | 734                | 274.9                    |         |
| 3528         | GIII     | 10,000 MG/M <sup>3</sup> GASOLINE MTBE VAPOR | F      | 1918              | 1221               | 63.66              | 658                | 256.2                    |         |
| 3528         | GIII     | 10,000 MG/M <sup>3</sup> GASOLINE MTBE VAPOR | F      | 1734              | 1086               | 62.64              | 644                | 246.7                    |         |
| -            |          | 10,000 MG/M <sup>3</sup> GASOLINE MTBE VAPOR | F      | 418               | 231                | 55.20              | 594                | 265.2                    |         |
| 3530         | GIII     | 20,000 MG/M <sup>3</sup> GASOLINE MTBE VAPOR | F      | 570               | 357                | 62.58              | 556                | 244.8                    |         |
| 4531         | GIV      |                                              |        | 1036              | 627                | 60.54              | 488                | 238.6                    |         |
| 4532         | GI∨      | 20,000 MG/M <sup>3</sup> GASOLINE MTBE VAPOR | -      |                   | 396                | 76.56              | 649                | 246.8                    |         |
| 4533         | GIV      | 20,000 MG/M <sup>3</sup> GASOLINE MTBE VAPOR | F      | 517               |                    | 61.20              | 534                | 249.2                    |         |
| 4534         | GIV      | 20,000 MG/M <sup>3</sup> GASOLINE MTBE VAPOR | F      | 343               | 210                |                    | 480                | 251.3                    |         |
| 4535         | GI∨      | 20,000 MG/M <sup>3</sup> GASOLINE MTBE VAPOR | F      | 519               | 258                | 49.68              |                    | 223.3                    |         |
| 4536         | GI∨      | 20,000 MG/M <sup>3</sup> GASOLINE MTBE VAPOR | F      | 297               | 165                | 55.56              | 552                |                          |         |
| 4537         | GIV      | 20,000 MG/M <sup>3</sup> GASOLINE MTBE VAPOR | F      | 2865              | 1800               | 62.82              | 594                | 248.4                    |         |
| 4538         | GIV      | 20,000 MG/M <sup>3</sup> GASOLINE MTBE VAPOR | F      | 1884              | 1341               | 71.16              | 664                | 259.0                    |         |
| 4539         | GIV      | 20,000 MG/M <sup>3</sup> GASOLINE MTBE VAPOR | F      | 481               | 363                | 75.54              | 682                | 270.9                    |         |
|              | -        | 20,000 MG/M <sup>3</sup> GASOLINE MTBE VAPOR |        | 470               | 297                | 63.24              | 536                | 226.4                    |         |
| 4540         | GIV      | 50 MG/KG CYCLOPHOSPHAMIDE                    | F      | 0                 | 0                  | 62.64              | 221                | 231.3                    |         |
| 5531         | GV<br>GV | 50 MG/KG CYCLOPHOSPHAMIDE                    | F      | ŏ                 | õ                  | 59.04              | 290                | 235.5                    |         |
| 5532         | GV       | 50 MG/KG CYCLOPHOSPHAMIDE                    | Ē      | õ                 | 0                  | 61.02              | 249                | 221.1                    |         |
| 5533<br>5534 | GV       | 50 MG/KG CYCLOPHOSPHAMIDE                    | F      | õ                 | ō                  | 60.66              | 285                | 256.6                    |         |
| 5535         | GV       | 50 MG/KG CYCLOPHOSPHAMIDE                    | Ē      | õ                 | 0                  | 59.76              | 260                | 219.6                    |         |
| 5536         | GV       | 50 MG/KG CYCLOPHOSPHAMIDE                    | F      | Ō                 | 0                  | 88.32              | 333                | 255.9                    |         |
| 5537         | GV       | 50 MG/KG CYCLOPHOSPHAMIDE                    | F      | Ō                 | 0                  | 77.04              | 266                | 217.0                    |         |
| 5538         | GV       | 50 MG/KG CYCLOPHOSPHAMIDE                    | F      | Ó                 | 0                  | 62.34              | 268                | 224.3                    |         |
| 5539         | GV       | 50 MG/KG CYCLOPHOSPHAMIDE                    | F      | 0                 | 0                  | 67.44              | 260                | 233.5                    |         |
| 5540         | GV       | 50 MG/KG CYCLOPHOSPHAMIDE                    | F      | 0                 | 0                  | - 95.94            | 311                | 247.9                    |         |

Page 1245

#### INDIVIDUAL ANIMAL DATA AFC GASOLINE MTBE VAPOR CONDENSATE HLS STUDY NO.: 00-6126 (REPEAT) SPONSOR STUDY NO.: 211-MTBE-S

| ANIMAL NO | GROUP | DOSE                             | SEX | IGM AFC/106 SP.C. | IGM AFC/SPLEEN 103 | CELLS/SPLEEN 107 | SPLEEN WEIGHT (MG) | BODY WEIGHT (G)<br>227.9 |
|-----------|-------|----------------------------------|-----|-------------------|--------------------|------------------|--------------------|--------------------------|
| 1546      | GI    | AIR ONLY                         | F   | 597               | 573                | 96.00            | 705                | 239.2                    |
| 1547      | GI    | AIR ONLY                         | F   | 498               | 387                | 77.76            | 615                | 227.2                    |
| 1548      | GI    | AIR ONLY                         | F   | 571               | 528                | 92.52            | 669                | 244.0                    |
| 1549      | GI    | AIR ONLY                         | F   | 279               | 168                | 60.12            | 516                |                          |
| 1550      | GI    | AIR ONLY                         | F   | 291               | 225                | 77.34            | 613                | 221.7                    |
| 1551      | GI    | AIR ONLY                         | F   | 282               | 213                | 75.42            | 568                | 237.4                    |
| 1552      | GI    | AIR ONLY                         | F   | 623               | 432                | 69.30            | 640                | 226.4                    |
| 1553      | Gi    | AIR ONLY                         | F   | 170               | 96                 | 56.58            | 493                | 220.9                    |
|           | Gi    | AIR ONLY                         | F   | 131               | 102                | 78.06            | 574                | 249.1                    |
| 1554      | GI    | AIR ONLY                         | F   | 190               | 120                | 63.12            | 494                | 246.9                    |
| 1555      |       | 2,000 MG/M3 GASOLINE MTBE VAPOR  | F   | 387               | 300                | 77.58            | 598                | 219.2                    |
| 2536      | GII   |                                  | F   | 785               | 471                | 60.00            | 699                | 237.9                    |
| 2537      | GII   | 2,000 MG/M3 GASOLINE MTBE VAPOR  | F   | 525               | 330                | 62.88            | 489                | 233.4                    |
| 2538      | GII   | 2,000 MG/M3 GASOLINE MTBE VAPOR  | F   | 290               | 165                | 56.88            | 444                | 214.0                    |
| 2539      | GII   | 2,000 MG/M3 GASOLINE MTBE VAPOR  | F   | 164               | 153                | 93.54            | 681                | 246.8                    |
| 2540      | Gli   | 2,000 MG/M3 GASOLINE MTBE VAPOR  |     | 337               | 213                | 63.12            | 647                | 250.1                    |
| 2541      | GII   | 2,000 MG/M3 GASOLINE MTBE VAPOR  | F   | 145               | 90                 | 61.92            | 490                | 222.0                    |
| 2542      | GII   | 2,000 MG/M3 GASOLINE MTBE VAPOR  | F   |                   | 15                 | 62.76            | 535                | 232.5                    |
| 2543      | GII   | 2,000 MG/M3 GASOLINE MTBE VAPOR  | F   | 24                |                    | 78.18            | 577                | 230.9                    |
| 2544      | Gli   | 2,000 MG/M3 GASOLINE MTBE VAPOR  | F   | 38                | 30                 | 48.06            | 465                | 197.9                    |
| 2545      | GII   | 2,000 MG/M3 GASOLINE MTBE VAPOR  | F   | 56                | 27                 | 67.74            | 546                | 235.5                    |
| 3536      | GIII  | 10,000 MG/M3 GASOLINE MTBE VAPOR | F   | 589               | 399                |                  | 602                | 228.6                    |
| 3537      | GII   | 10,000 MG/M3 GASOLINE MTBE VAPOR | F   | 104               | 75                 | 71.94            | 461                | 219.9                    |
| 3538      | GIII  | 10,000 MG/M3 GASOLINE MTBE VAPOR | F   | 140               | 66                 | 47.10            |                    | 237.5                    |
| 3539      | GIII  | 10,000 MG/M3 GASOLINE MTBE VAPOR | F   | 120               | 78                 | 65.22            | 483                | 241.0                    |
| 3540      | GIII  | 10,000 MG/M3 GASOLINE MTBE VAPOR | F   | 252               | 201                | 79.74            | 642                | 238.9                    |
| 3541      | GIII  | 10,000 MG/M3 GASOLINE MTBE VAPOR | F   | 31                | 18                 | 58.92            | 536                |                          |
| 3542      | GIII  | 10,000 MG/M3 GASOLINE MTBE VAPOR | F   | 82                | 48                 | 58.86            | 528                | 215.7                    |
| 3543      | GIII  | 10,000 MG/M3 GASOLINE MTBE VAPOR | F   | 248               | 144                | 58.08            | 524                | 246.6                    |
| 3544      | GIII  | 10,000 MG/M3 GASOLINE MTBE VAPOR | F   | 132               | 78                 | 59.28            | 521                | 234.5                    |
| 3545      | GIII  | 10,000 MG/M3 GASOLINE MTBE VAPOR | F   | 959               | 738                | 76.92            | 601                | 254.2                    |
| 4546      | GIV   | 20,000 MG/M3 GASOLINE MTBE VAPOR | F   | 926               | 717                | 77.46            | 677                | 247.6                    |
| 4547      | GIV   | 20,000 MG/M3 GASOLINE MTBE VAPOR | F   | 227               | 150                | 66.12            | 591                | 235.7                    |
|           | GIV   | 20,000 MG/M3 GASOLINE MTBE VAPOR | F   | 2136              | 978                | 45.78            | 502                | 236.3                    |
| 4548      |       | 20,000 MG/M3 GASOLINE MTBE VAPOR | Ē   | 89                | 60                 | 67.38            | 684                | 242.2                    |
| 4549      | GIV   | 20,000 MG/M3 GASOLINE MTBE VAPOR | F   | 142               | 93                 | 65.40            | 524                | 233.7                    |
| 4550      | GIV   |                                  | F   | 53                | 30                 | 57.06            | 542                | 242.9                    |
| 4551      | GIV   | 20,000 MG/M3 GASOLINE MTBE VAPOR | F   | 56                | 36                 | 63.96            | 613                | 229.2                    |
| 4552      | GIV   | 20,000 MG/M3 GASOLINE MTBE VAPOR | F   | 41                | 27                 | 65.34            | 508                | 204.9                    |
| 4553      | GIV   | 20,000 MG/M3 GASOLINE MTBE VAPOR | F   | 15                | 9                  | 59.16            | 511                | 232.8                    |
| 4554      | GIV   | 20,000 MG/M3 GASOLINE MTBE VAPOR | F   | 171               | 138                | 80.52            | 716                | 236.6                    |
| 4555      | GIV   | 20,000 MG/M3 GASOLINE MTBE VAPOR |     |                   | 0                  | 20.82            | 190                | 184.3                    |
| 5546      | GV    | 50 MG/KG CYCLOPHOSPHAMIDE        | F   | 0                 | 3                  | 14.58            | 223                | 235.8                    |
| 5547      | GV    | 50 MG/KG CYCLOPHOSPHAMIDE        | F   | 21                | 3<br>0             | 14.34            | 286                | 211.8                    |
| 5548      | GV    | 50 MG/KG CYCLOPHOSPHAMIDE        | F   | 0                 | 0                  | 13.98            | 252                | 209.8                    |
| 5549      | GV    | 50 MG/KG CYCLOPHOSPHAMIDE        | F   | 0                 |                    | 11.58            | 219                | 208.2                    |
| 5550      | GV    | 50 MG/KG CYCLOPHOSPHAMIDE        | F   | 0                 | 0                  | 9.24             | 183                | 190.2                    |
| 5551      | GV    | 50 MG/KG CYCLOPHOSPHAMIDE        | F   | 162               | 15                 |                  | 239                | 199.0                    |
| 5552      | GV    | 50 MG/KG CYCLOPHOSPHAMIDE        | F   | 0                 | 0                  | 11.58            | 252                | 229.8                    |
| 5553      | GV    | 50 MG/KG CYCLOPHOSPHAMIDE        | F   | 0                 | 0                  | 11.82            |                    | 221.6                    |
| 5554      | GV    | 50 MG/KG CYCLOPHOSPHAMIDE        | F   | 0                 | 0                  | 16.68            | 294                | 197.1                    |
| 3334      | GV    | 50 MG/KG CYCLOPHOSPHAMIDE        | F   | 0                 | 0                  | 11.34            | 222                | 197.1                    |

# INDIVIDUAL ANIMAL DATA AFC GASOLINE MTBE VAPOR CONDENSATE HLS STUDY NO.: 00-6126 (2ND REPEAT) SPONSOR STUDY NO.: 211-MTBE-S

| ANIMAL NO | GROUP | DOSE                             | SEX    | IGM AFC/10 <sup>6</sup> SP.C. | IGM AFC/SPLEEN 103 | CELLS/SPLEEN x107 | SPLEEN WEIGHT (MG) | BODY WEIGHT (G) | COMMENTS |
|-----------|-------|----------------------------------|--------|-------------------------------|--------------------|-------------------|--------------------|-----------------|----------|
| 1581      | G     | AIR ONLY                         | F      | 2149                          | 1701               | 79.14             | 732                | 246.5           |          |
| 1582      | GI    | AIR ONLY                         | F      | 2949                          | 1755               | 59.52             | 516                | 217.9           |          |
| 1583      | GI    | AIR ONLY                         | F      | 604                           | 393                | 65.10             | 708                | 266.0           |          |
| 1584      | GI    | AIR ONLY                         | F      | 1150                          | 918                | 79.86             | 633                | 252.0           |          |
| 1585      | GI    | AIR ONLY                         | F      | 1366                          | 1134               | 83.04             | 749                | 257.6           |          |
| 1586      | GI    | AIR ONLY                         | F      | 1014                          | 882                | 86.94             | 780                | 240.1           |          |
| 1587      | GI    | AIR ONLY                         | F      | 1714                          | 1341               | 78.24             | 692                | 282.6           |          |
| 1588      | GI    | AIR ONLY                         | F      | 2271                          | 1296               | 57.06             | 538                | 239.8           |          |
| 1589      | GI    | AIR ONLY                         | F      | 1855                          | 1458               | 78.60             | 670                | 256.6           |          |
| 1590      | GI    | AIR ONLY                         | F      | 1388                          | 741                | 53.40             | 445                | 223.6           |          |
| 2581      | GII   | 2,000 MG/M3 GASOLINE MTBE VAPOR  | F      | 745                           | 633                | 85.02             | 674                | 240.7           |          |
| 2582      | GII   | 2,000 MG/M3 GASOLINE MTBE VAPOR  | F      | 678                           | 420                | 61.98             | 538                | 262.3           |          |
| 2583      | GII   | 2,000 MG/M3 GASOLINE MTBE VAPOR  | F      | 496                           | 381                | 76.80             | 759                | 264.3           |          |
| 2584      | GII   | 2,000 MG/M3 GASOLINE MTBE VAPOR  | F      | 462                           | 306                | 66.30             | 505                | 262.2           |          |
| 2585      | GII   | 2,000 MG/M3 GASOLINE MTBE VAPOR  | Ē      | 1634                          | 1332               | 81.54             | 690                | 263.3           |          |
| 2586      | GII   | 2.000 MG/M3 GASOLINE MTBE VAPOR  | Ē      | 1442                          | 1350               | 93.60             | 657                | 244.4           |          |
| 2587      | GII   | 2,000 MG/M3 GASOLINE MTBE VAPOR  | ,<br>F | 1262                          | 729                | 57.78             | 462                | 247.8           |          |
| 2588      | GII   | 2,000 MG/M3 GASOLINE MTBE VAPOR  | , r    | 1989                          | 1359               | 68.34             | 604                | 248.3           |          |
|           | GII   |                                  |        | 1950                          | 1863               | 95.52             | 799                | 267.1           |          |
| 2589      |       | 2,000 MG/M3 GASOLINE MTBE VAPOR  |        | 628                           | 492                | 78.30             | 677                | 268.3           |          |
| 2590      | GII   | 2,000 MG/M3 GASOLINE MTBE VAPOR  | r -    | 1083                          | 858                | 79.20             | 722                | 277.0           |          |
| 3581      | GIII  | 10,000 MG/M3 GASOLINE MTBE VAPOR | 5      |                               | 1899               | 60.48             | 565                | 229.5           |          |
| 3582      | GIII  | 10,000 MG/M3 GASOLINE MTBE VAPOR | F      | 3140                          | 1035               | 66.60             | 537                | 226.4           |          |
| 3583      | GIII  | 10,000 MG/M3 GASOLINE MTBE VAPOR | -      | 1554                          |                    | 60.18             | 484                | 236.7           |          |
| 3584      | GIII  | 10,000 MG/M3 GASOLINE MTBE VAPOR | E.     | 912                           | 549                |                   |                    | 228.3           |          |
| 3585      | GIII  | 10,000 MG/M3 GASOLINE MTBE VAPOR | F      | 2248                          | 1404               | 62.46             | 557                | 220.5           |          |
| 3586      | GIII  | 10,000 MG/M3 GASOLINE MTBE VAPOR | F      | 1814                          | 963                | 53.10             | 501                |                 |          |
| 3587      | GIII  | 10,000 MG/M3 GASOLINE MTBE VAPOR | F      | 861                           | 471                | 54.72             | 559                | 269.4           |          |
| 3588      | GIII  | 10,000 MG/M3 GASOLINE MTBE VAPOR | F      | 621                           | 444                | 71.52             | 521                | 261.9           |          |
| 3589      | GIII  | 10,000 MG/M3 GASOLINE MTBE VAPOR | F      | 2348                          | 1827               | 77.82             | 708                | 247.8           |          |
| 3590      | GIII  | 10,000 MG/M3 GASOLINE MTBE VAPOR | F      | 317                           | 207                | 65.22             | 588                | 231.0           |          |
| 4581      | GIV   | 20,000 MG/M3 GASOLINE MTBE VAPOR | F      | 2091                          | 1503               | 71.88             | 544                | 237.0           |          |
| 4582      | GIV   | 20,000 MG/M3 GASOLINE MTBE VAPOR | F      | 3174                          | 1809               | 57.00             | 494                | 213.0           |          |
| 4583      | GIV   | 20,000 MG/M3 GASOLINE MTBE VAPOR | F      | 1896                          | 1242               | 65.52             | 568                | 271.6           |          |
| 4584      | GIV   | 20,000 MG/M3 GASOLINE MTBE VAPOR | F      | 1297                          | 972                | 74.94             | 626                | 263.6           |          |
| 4585      | GIV   | 20,000 MG/M3 GASOLINE MTBE VAPOR | F      | 1489                          | 981                | 65.88             | 584                | 265.6           |          |
| 4586      | GIV   | 20,000 MG/M3 GASOLINE MTBE VAPOR | F      | 1311                          | 1566               | 119.46            | 922                | 289.7           |          |
| 4587      | GIV   | 20,000 MG/M3 GASOLINE MTBE VAPOR | F      | 1598                          | 1089               | 68.16             | 589                | 227.0           |          |
| 4588      | GIV   | 20,000 MG/M3 GASOLINE MTBE VAPOR | F      | 1463                          | 1125               | 76.92             | 722                | 255.6           |          |
| 4589      | GIV   | 20,000 MG/M3 GASOLINE MTBE VAPOR | F      | 824                           | 528                | 64.08             | 625                | 265.9           |          |
| 4590      | GIV   | 20,000 MG/M3 GASOLINE MTBE VAPOR | Ē      | 1656                          | 1638               | 98.94             | 833                | 259.3           |          |
| 5581      | GV    | 50 MG/KG CYCLOPHOSPHAMIDE        | Ē      | 0                             | 0                  | 9.18              | 216                | 203.0           |          |
| 5582      | GV    | 50 MG/KG CYCLOPHOSPHAMIDE        | È      | ŏ                             | õ                  | 6.66              | 198                | 210.0           |          |
| 5583      | GV    | 50 MG/KG CYCLOPHOSPHAMIDE        | È      | ŏ                             | ŏ                  | 9.06              | 243                | 238.0           |          |
|           |       | 50 MG/KG CYCLOPHOSPHAMIDE        | È      | ő                             | ŏ                  | 11.40             | 282                | 202.5           |          |
| 5584      | GV    |                                  | 2      | 0                             | ŏ                  | 10.92             | 342                | 234.5           |          |
| 5585      | GV    | 50 MG/KG CYCLOPHOSPHAMIDE        |        | 0                             | 0                  | 12.24             | 294                | 219.5           |          |
| 5586      | GV    | 50 MG/KG CYCLOPHOSPHAMIDE        | r<br>- | -                             | 0                  | 10.50             | 264                | 249.7           |          |
| 5587      | GV    | 50 MG/KG CYCLOPHOSPHAMIDE        | -      | 0                             | -                  |                   |                    | 203.4           |          |
| 5588      | GV    | 50 MG/KG CYCLOPHOSPHAMIDE        | F      | 0                             | 0                  | 8.70              | 272                |                 |          |
| 5589      | GV    | 50 MG/KG CYCLOPHOSPHAMIDE        | F      | 0                             | 0                  | 14.10             | 345                | 264.3           |          |
| 5590      | GV    | 50 MG/KG CYCLOPHOSPHAMIDE        | F      | 0                             | 0                  | 13.74             | 374                | 288.0           |          |

APPENDIX C - CONTRACTING SPONSOR'S EXPOSURE AND ANIMAL DATA

| Huntingdon Life Sciences | 00-6126    | Page 1249    |
|--------------------------|------------|--------------|
|                          | 211-MTBE-S | Final Report |

| Animal Exposure and Animal Data |            |
|---------------------------------|------------|
| Preface                         | Appendix C |

**INTRODUCTION:** The following is data generated at Huntingdon Life Sciences, East Millstone, NJ. The separately issued main study report should be referenced for details of the procedures used for test atmosphere generation/characterization and animal evaluations. Note that for brevity and relevance, only the data from the 2<sup>nd</sup> Repeat Study (exposed concurrent with study 00-4208) is presented. The data for the Original and 1<sup>st</sup> Repeat Study are available in the study file.

| STUDY DATES: | Date of Animal Receipt:       | 19 July 2001             |
|--------------|-------------------------------|--------------------------|
|              | Experimental Initiation Date: | 2 August 2001 (in-life)  |
|              | Experimental Completion Date: | 29 August 2001 (in-life) |

**EXPOSURES AND IN-LIFE SUMMARY:** The actual measured results during the exposures were comparable to the targeted exposure levels. There were no exposure-related effects seen in the test animals with regards to body weights and feed consumption.

# TABLE OF CONTENTS

# TABLES

| A. | Chamber Monitoring Results                        |  |
|----|---------------------------------------------------|--|
| B. | Summary of Clinical Observations (pretest only)   |  |
| C. | Mean Body Weights (grams)                         |  |
| D. | Mean Body Weight Change (grams)                   |  |
| E. | Mean Feed Consumption Values (grams/kg/day)       |  |
| F. | Individual Clinical Observations (pretest only)   |  |
| G. | Individual Body Weights (grams)                   |  |
| H. | Individual Body Weight Change (grams)             |  |
| I. | Individual Feed Consumption Values (grams/kg/day) |  |
| J. | Animal Termination History                        |  |

Table A

,

|     |           |          |                      |                      | Cha      | mber Mo    | nitoring F            | Results  |       |           |                      |             |           |
|-----|-----------|----------|----------------------|----------------------|----------|------------|-----------------------|----------|-------|-----------|----------------------|-------------|-----------|
|     |           |          |                      |                      | Curr     | nulative E | xposure               | Record   |       |           |                      |             |           |
|     |           |          |                      |                      | Grou     | p I - 0 mg | g/m <sup>3</sup> (Air | Control) |       |           |                      |             |           |
|     |           |          |                      |                      |          | ·、         | <u> </u>              |          |       |           |                      | Chamber Env | vironment |
|     |           |          |                      |                      |          |            |                       |          | F     | article S | Size                 | Mear        | <u>ו</u>  |
| Day | Date      | Exposure | Nominal              | Analy                | tical Ch | amber C    | oncentra              | tion     | De    | etermina  | tions                | Temperature | Humidity  |
| 5   |           | Number   |                      | Mean                 |          | Indiv      | idual                 |          | MMAD  | GSD       | TMC                  |             |           |
|     |           |          |                      |                      |          |            |                       |          |       |           |                      |             |           |
|     |           |          | (mg/m <sup>3</sup> ) | (mg/m <sup>3</sup> ) |          | (mg        | /m <sup>3</sup> )     |          | (µm)  |           | (mg/m <sup>3</sup> ) | (°C)        | (%)       |
| 51  | 2-Aug-01  | 52       | 0                    | 0                    | 0        | 0          | 0                     | 0        |       |           |                      | 24          | 52        |
| 52  | 3-Aug-01  | 53       | 0                    | 0                    | 0        | 0          | 0                     | 0        |       |           |                      | 24          | 66        |
| 55  | 6-Aug-01  | 56       | 0                    | 0                    | 0        | 0          | 0                     | 0        |       |           |                      | 24          | 45        |
| 56  | 7-Aug-01  | 57       | 0                    | 0                    | 0        | 0          | 0                     | 0        |       |           |                      | 24          | 50        |
| 57  | 8-Aug-01  | 58       | 0                    | 0                    | 0        | 0          | 0                     | 0        | 0.847 | 1.920     | 1.09E-02             | 24          | 46        |
| 58  | 9-Aug-01  | 59       | 0                    | 0                    | 0        | 0          | 0                     | 0        |       |           |                      | 25          | 48        |
| 59  | 10-Aug-01 | 60       | 0                    | 0                    | 0        | 0          | 0                     | 0        |       | 1         |                      | 24          | 52        |
| 60  | 11-Aug-01 | 61       | 0                    | 0                    | 0        | 0          | 0                     | 0        |       | ,         |                      | 23          | 47        |
| 62  | 13-Aug-01 | 63       | 0                    | 0                    | 0        | 0          | 0                     | 0        |       |           |                      | 24          | 42        |
| 63  | 14-Aug-01 | 64       | 0                    | 0                    | 0        | 0          | 0                     | 0        |       |           |                      | 23          | 54        |
| 64  | 15-Aug-01 | 65       | 0                    | 0                    | 0        | 0          | 0                     | 0        | 0.832 | 1.444     | 2.82E-03             | 24          | 41        |
| 65  | 16-Aug-01 | 66       | 0                    | 0                    | 0        | 0          | 0                     | 0        |       |           |                      | 23          | 51        |
| 66  | 17-Aug-01 | 67       | 0                    | 0                    | 0        | 0          | 0                     | 0        |       |           |                      | 24          | 42        |
| 69  | 20-Aug-01 | 70       | 0                    | 0                    | 0        | 0          | 0                     | 0        | r     |           |                      | 24          | 45        |
| 70  | 21-Aug-01 | 71       | 0                    | 0                    | 0        | 0          | 0                     | 0        |       |           |                      | 24          | 42        |
| 71  | 22-Aug-01 | 72       | 0                    | 0                    | 0        | 0          | 0                     | 0        | 11.36 | 3.068     | 5.34E-03             | 24          | 48        |
| 72  | 23-Aug-01 | 73       | 0                    | 0                    | 0        | 0          | 0                     | 0        |       |           |                      | 24          | 50        |
| 73  | 24-Aug-01 | 74       | 0                    | 0                    | 0        | 0          | 0                     | 0        |       |           |                      | 22          | 71        |
| 76  | 27-Aug-01 | 77       | 0                    | 0                    | 0        | 0          | 0                     | 0        |       | ]         |                      | 24          | 43        |
| 77  | 28-Aug-01 |          | 0                    | 0                    | 0        | 0          | 0                     | 0        |       | <b> </b>  |                      | 24          | 42        |
|     |           | Mean     | 0                    |                      |          | 0          |                       |          | 4.346 | 2.144     | 6.35E-03             | 23.8        | 48.9      |
|     |           | S.D.     | 0                    |                      |          | 0          |                       |          | 6.074 | 0.835     | 4.13E-03             | 0.6         | 7.8       |

|     |           |              |                      |                      |          |            | nitoring F        |                 |       |           |                      |             |           |
|-----|-----------|--------------|----------------------|----------------------|----------|------------|-------------------|-----------------|-------|-----------|----------------------|-------------|-----------|
|     |           |              |                      |                      | Cum      | iulative E | xposure l         | Record          |       |           |                      |             |           |
|     |           |              |                      |                      | G        | Group II - | 2000 mg           | /m <sup>3</sup> |       |           |                      |             |           |
|     |           |              |                      |                      |          |            |                   |                 |       |           |                      | Chamber Env | vironment |
|     |           |              |                      |                      |          |            |                   |                 | Р     | article S | Size                 | Mear        | 1         |
| Day | Date      | Exposure     | Nominal              | Analy                | tical Ch | amber C    | oncentra          | tion            | De    | termina   | tions                | Temperature | Humidity  |
|     |           | Number       |                      | Mean                 |          | Indiv      | idual             |                 | MMAD  | GSD       | TMC                  |             |           |
|     |           |              |                      |                      |          |            |                   |                 |       |           |                      |             |           |
|     |           |              | (mg/m <sup>3</sup> ) | (mg/m <sup>3</sup> ) |          | (mg        | /m <sup>3</sup> ) |                 | (µm)  |           | (mg/m <sup>3</sup> ) | (°C)        | (%)       |
| 51  | 2-Aug-01  | 52           | 2130                 | 2038                 | 2070     | 2040       | 2010              | 2030            |       |           |                      | 24          | 56        |
| 52  | 3-Aug-01  | 53           | 2110                 | 2023                 | 2100     | 1820       | 2190              | 1980            |       |           |                      | 25          | 63        |
| 55  | 6-Aug-01  | 56           | 1950                 | 2013                 | 1920     | 1990       | 2080              | 2060            |       |           |                      | 25          | 44        |
| 56  | 7-Aug-01  | 57           | 2070                 | 2023                 | 1900     | 2130       | 2060              | 2000            |       |           |                      | 24          | 50        |
| 57  | 8-Aug-01  | 58           | 2050                 | 2023                 | 1970     | 2120       | 2020              | 1980            | 0.814 | 1.374     | 6.71E-03             | 25          | 44        |
| 58  | 9-Aug-01  | 59           | 2020                 | 2000                 | 1950     | 2000       | 2000              | 2050            |       |           |                      | 25          | 48        |
| 59  | 10-Aug-01 | 60           | 2030                 | 2000                 | 1930     | 1900       | 2060              | 2110            |       |           |                      | 25          | 53        |
| 60  | 11-Aug-01 | 61           | 2060                 | 2035                 | 2170     | 1980       | 2020              | 1970            |       |           |                      | 24          | 43        |
| 62  | 13-Aug-01 | 63           | 2090                 | 2095                 | 2030     | 2000       | 2150              | 2200            |       |           |                      | 25          | 40        |
| 63  | 14-Aug-01 | 64           | 2140                 | 2053                 | 2060     | 2010       | 2090              | 2050            |       |           |                      | 24          | 48        |
| 64  | 15-Aug-01 | 65           | 2050                 | 2045                 | 2060     | 2080       | 2000              | 2040            | 1.156 | 2.940     | 8.00E-03             | 25          | 39        |
| 65  | 16-Aug-01 | 66           | 1930                 | 2000                 | 2000     | 1810       | 2240              | 1950            |       |           |                      | 24          | 45        |
| 66  | 17-Aug-01 | 67           | 2020                 | 2045                 | 2000     | 2000       | 2050              | 2130            |       |           |                      | 25          | 39        |
| 69  | 20-Aug-01 | 70           | 2200                 | 1990                 | 2070     | 1720       | 2140              | 2030            | 1     |           |                      | 25          | 43        |
| 70  | 21-Aug-01 | 71           | 2060                 | 2020                 | 2020     | 2030       | 2030              | 2000            |       |           |                      | 25          | 38        |
| 71  | 22-Aug-01 | 72           | 2020                 | 2050                 | 2000     | 2130       | 2010              | 2060            | 0.910 | 1.693     | 1.67E-03             | 25          | 44        |
| 72  | 23-Aug-01 | 73           | 2060                 | 1978                 | 2040     | 2000       | 1950              | 1920            |       |           |                      | 24          | 50        |
| 73  | 24-Aug-01 | 74           | 2270                 | 1985                 | 2010     | 2000       | 2000              | 1930            |       |           |                      | 24          | 62        |
| 76  | 27-Aug-01 | 77           | 2070                 | 2155                 | 2030     | 2130       | 2450              | 2010            |       |           |                      | 25          | 39        |
| 77  | 28-Aug-01 | 78           | 2050                 | 2028                 | 2060     | 2000       | 2120              | 1930            |       | <b> </b>  |                      | 25          | 38        |
|     |           | Mean         | 2069                 |                      |          | 2030       |                   |                 | 0.960 | 2.002     | 5.46E-03             | 24.7        | 46.3      |
|     |           | <b>S</b> .D. | 77                   |                      |          | 96         |                   |                 | 0.177 | 0.828     | 3.35E-03             | 0.5         | 7.5       |

|     | · · · · · · · · · · · · · · · · · · · |          |                      |                      | Cha        | mber Mon     | itoring Re              | sults          |       |             |                      |             |           |
|-----|---------------------------------------|----------|----------------------|----------------------|------------|--------------|-------------------------|----------------|-------|-------------|----------------------|-------------|-----------|
|     |                                       |          |                      |                      | Cum        | ulative Ex   | posu <mark>re</mark> Re | ecord          |       |             |                      |             |           |
|     |                                       |          |                      |                      | G          | roup III - 1 | 0000 mg/                | m <sup>3</sup> |       |             |                      |             |           |
|     |                                       |          |                      |                      |            |              |                         |                |       |             |                      | Chamber Env | vironment |
|     |                                       |          |                      |                      |            |              |                         |                | F     | Particle \$ | Size                 | Mear        | n         |
| Day | Date                                  | Exposure | Nominal              | Ana                  | lytical Ch | amber Co     | oncentrat               | ion            | De    | etermina    |                      | Temperature | Humidity  |
| -   |                                       | Number   |                      | Mean                 |            | Indivi       | dual                    |                | MMAD  | GSD         | ТМС                  |             |           |
|     |                                       |          |                      |                      |            |              |                         |                |       |             |                      |             |           |
|     |                                       |          | (mg/m <sup>3</sup> ) | (mg/m <sup>3</sup> ) |            | (mg/         | m <sup>3</sup> )        |                | (µm)  |             | (mg/m <sup>3</sup> ) | (°C)        | (%)       |
| 51  | 2-Aug-01                              | 52       | 10200                | 10430                | 10100      | 10300        | 10200                   | 11100          |       |             |                      | 24          | 58        |
| 52  | 3-Aug-01                              | 53       | 10000                | 10360                | 10100      | 10900        | 10500                   | 9920           |       |             |                      | 25          | 64        |
| 55  | 6-Aug-01                              | 56       | 9950                 | 10300                | 11100      | 10100        | 10000                   | 10000          |       |             |                      | 25          | 43        |
| 56  | 7-Aug-01                              | 57       | 9990                 | 10400                | 9900       | 10600        | 10900                   | 10200          |       |             |                      | 25          | 45        |
| 57  | 8-Aug-01                              | 58       | 10300                | 10180                | 10100      | 9800         | 10100                   | 10700          | 0.825 | 1.462       | 7.14E-03             | 25          | 44        |
| 58  | 9-Aug-01                              | 59       | 10000                | 10220                | 9770       | 10700        | 10000                   | 10400          |       |             |                      | 25          | 46        |
| 59  | 10-Aug-01                             | 60       | 9650                 | 10130                | 10000      | 10000        | 10800                   | 9700           |       |             |                      | 25          | 54        |
| 60  | 11-Aug-01                             | 61       | 10000                | 10170                | 10000      | 9770         | 10200                   | 10700          |       |             |                      | 24          | 43        |
| 62  | 13-Aug-01                             | 63       | 10100                | 10380                | 10300      | 10400        | 10400                   | 10400          |       |             |                      | 25          | 40        |
| 63  | 14-Aug-01                             | 64       | 9660                 | 10230                | 10000      | 10000        | 10400                   | 10500          |       |             |                      | 25          | 42        |
| 64  | 15-Aug-01                             | 65       | 9550                 | 10280                | 9920       | 10100        | 10000                   | 11100          | 0.841 | 1.913       | 3.74E-03             | 25          | 39        |
| 65  | 16-Aug-01                             | 66       | 9600                 | 9953                 | 10200      | 10600        | 10000                   | 9010           |       |             |                      | 24          | 49        |
| 66  | 17-Aug-01                             | 67       | 9870                 | 10340                | 10000      | 10800        | 9940                    | 10600          |       |             |                      | 25          | 39        |
| 69  | 20-Aug-01                             | 70       | 10300                | 10180                | 10000      | 10300        | 10100                   | 10300          |       |             |                      | 24          | 49<br>38  |
| 70  | 21-Aug-01                             | 71       | 10400                | 10310                | 9230       | 10600        | 11000                   | 10400          | 0.040 | 0.004       |                      | 26          | 42        |
| 71  | 22-Aug-01                             | 72       | 9480                 | 10150                | 10100      | 10000        | 9910                    | 10600          | 0.946 | 2.321       | 1.83E-03             | 25          | 42        |
| 72  | 23-Aug-01                             | 73       | 10000                | 10300                | 10500      | 10500        | 10000                   | 10300          |       |             |                      | 25          | 48<br>55  |
| 73  | 24-Aug-01                             | 74       | 10100                | 10180                | 11100      | 9420         | 9390                    | 10800          |       |             |                      | 24<br>26    | 40        |
| 76  | 27-Aug-01                             | 77       | 10400                | 10880                | 10400      | 10600        | 11300                   | 11200          |       |             |                      | 26          | 40<br>39  |
| 77  | 28-Aug-01                             | 78       | 10000                | 10260                | 10200      | 9950         | 10300                   | 10600          |       |             |                      |             |           |
|     |                                       | Mean     | 9978                 |                      |            | 10280        |                         |                | 0.871 | 1.899       | 4.24E-03             | 24.9        | 45.9      |
|     |                                       | S.D.     | 275                  |                      |            | 446          |                         |                | 0.065 | 0.430       | 2.69E-03             | 0.6         | 7.2       |

Page 1253 00-6126

|     |           |             |                      |                      |           |            | nitoring R        |       |       |          |                      |             |             |
|-----|-----------|-------------|----------------------|----------------------|-----------|------------|-------------------|-------|-------|----------|----------------------|-------------|-------------|
|     |           |             |                      |                      |           |            | posure F          |       |       |          |                      |             |             |
|     |           |             |                      |                      | Gr        | oup IV - 2 | 20000 mg          | /m³   |       |          |                      |             |             |
|     |           |             |                      |                      |           |            |                   |       |       |          |                      | Chamber Env | vironment   |
|     |           |             |                      |                      |           |            |                   |       | F     | Particle | Size                 | Mear        |             |
| Day | Date      | Exposure    | Nominal              | Anal                 | ytical Ch | amber C    | oncentra          | tion  |       | etermina |                      | Temperature | Humidity    |
|     |           | Number      |                      | Mean                 |           | Indiv      | idual             |       | MMAD  | GSD      | TMC                  |             |             |
|     |           |             |                      |                      |           |            |                   |       |       |          |                      |             |             |
|     |           | :           | (mg/m <sup>3</sup> ) | (mg/m <sup>3</sup> ) |           | (mg        | /m <sup>3</sup> ) |       | (µm)  |          | (mg/m <sup>3</sup> ) | (°C)        | (%)         |
| 51  | 2-Aug-01  | 52          | 21300                | 20280                | 20000     | 20400      | 20600             | 20100 |       |          |                      | 24          | 60          |
| 52  | 3-Aug-01  | 53          | 21300                | 20400                | 20100     | 19300      | 21400             | 20800 |       |          |                      | 25          | 55          |
| 55  | 6-Aug-01  | 56          | 21000                | 20300                | 20400     | 20000      | 20200             | 20600 |       |          |                      | 25          | 42          |
| 56  | 7-Aug-01  | 57          | 20000                | 20230                | 20300     | 20400      | 20200             | 20000 |       |          |                      | 25          | 44          |
| 57  | 8-Aug-01  | 58          | 20800                | 20000                | 20000     | 20500      | 20000             | 19500 | 0.814 | 1.354    | 7.83E-03             | 25          | 44          |
| 58  | 9-Aug-01  | 59          | 21100                | 20180                | 19800     | 20700      | 20000             | 20200 |       |          |                      | 25          | 46          |
| 59  | 10-Aug-01 | 60          | 21200                | 20450                | 19900     | 20500      | 21000             | 20400 |       |          |                      | 25          | 50          |
| 60  | 11-Aug-01 | 61          | 19900                | 18530                | 19200     | 18500      | 20300             | 16100 |       |          |                      | 25          | 41          |
| 62  | 13-Aug-01 | 63          | 21300                | 20030                | 20000     | 19600      | 20400             | 20100 |       |          |                      | 25          | 41          |
| 63  | 14-Aug-01 | 64          | 21500                | 20050                | 20100     | 20000      | 20100             | 20000 |       |          |                      | 24          | 40          |
| 64  | 15-Aug-01 | 65          | 21500                | 20450                | 20000     | 20800      | 20600             | 20400 | 0.891 | 2.023    | 3.28E-03             | 25          | 39          |
| 65  | 16-Aug-01 | 66          | 21000                | 20200                | 20200     | 20000      | 20400             | 20200 |       |          |                      | 25          | 41          |
| 66  | 17-Aug-01 | 67          | 21400                | 20200                | 20000     | 20100      | 20000             | 20700 |       |          |                      | 25          | 38          |
| 69  | 20-Aug-01 | 70          | 21400                | 20000                | 19600     | 20400      | 20000             | 20000 |       |          |                      | 24          | 46<br>37    |
| 70  | 21-Aug-01 | 71          | 21300                | 20180                | 19700     | 20300      | 20700             | 20000 | 0.000 | 1        | 4 005 00             | 25          | 41          |
| 71  | 22-Aug-01 | 72          | 21000                | 20350                | 19800     | 20800      | 20000             | 20800 | 0.898 | 1.811    | 1.60E-03             | 25          | 41          |
| 72  | 23-Aug-01 | 73          | 21300                | 20030                | 19800     | 20400      | 19700             | 20200 |       |          |                      | 25<br>24    | 44<br>52    |
| 73  | 24-Aug-01 | 74          | 21700                | 20180                | 19800     | 20200      | 20200             | 20500 |       |          |                      | 24<br>25    | 39          |
| 76  | 27-Aug-01 | 77          | 22000                | 20630                | 19900     | 21100      | 20800             | 20700 | 1     |          |                      | 25          | 38          |
| 77  | 28-Aug-01 | 78          | 21200                | 20000                | 20000     | 20000      | 20000             | 20000 | 0.007 | 4 700    | 4 04E 02             | <u> </u>    | <b>43.9</b> |
|     |           | Mean        | 21160                |                      |           | 20131      |                   |       | 0.867 | 1.729    | 4.24E-03             |             | 6.1         |
|     |           | <u>S.D.</u> | 491                  |                      | l         | 630        | <u> </u>          |       | 0.047 | 0.342    | 3.22E-03             | 0.4         | 0.1         |

4

PAGE 1254

## TABLE B

### G MTBE VC: A 13-WEEK WHOLE-BODY INHALATION TOXICITY STUDY IN RATS WITH NEUROTOXICITY ASSESSMENTS AND 4-WEEK IN VIVO GENOTOXICITY AND IMMUNOTOXICITY ASSESSMENTS

| FEMALES               |        |    |    |       | SUMMARY OF CLINICAL OBSERVATIONS |
|-----------------------|--------|----|----|-------|----------------------------------|
|                       | GROUP# |    |    | STUDY |                                  |
| # OF ANIMALS EXAMINED | 1      | 10 |    |       |                                  |
|                       | 2      | 10 |    |       |                                  |
|                       | 3      | 10 |    |       |                                  |
|                       | 4      | 10 |    |       |                                  |
|                       | 5      | 10 |    |       |                                  |
|                       |        |    |    |       |                                  |
| NORMAL                |        |    |    |       |                                  |
| WITHIN NORMAL LIMITS  | 1      | 10 | 10 |       |                                  |
|                       | 2      | 9  | 9  |       |                                  |
|                       | 3      | 10 | 10 |       |                                  |
|                       | 4      | 10 | 10 |       |                                  |
|                       | 5      | 10 | 10 |       |                                  |
| APPEARANCE            |        |    |    |       |                                  |
| SOFT PROTRUSION - MID | 1      | 0  | 0  |       |                                  |
| ABDOMEŇ               | 2      | 1  | 1  |       |                                  |
|                       | 3      | 0  | 0  |       |                                  |
|                       | 4      | 0  | 0  |       |                                  |
|                       | 5      | 0  | 0  |       |                                  |

PAGE 1255

## TABLE C

#### G MTBE VC: A 13-WEEK WHOLE-BODY INHALATION TOXICITY STUDY IN RATS WITH NEUROTOXICITY ASSESSMENTS AND 4-WEEK IN VIVO GENOTOXICITY AND IMMUNOTOXICITY ASSESSMENTS

| LES      |                                    |        | AN BODY WEIGHTS ( |      | <b>-</b>     |                       |
|----------|------------------------------------|--------|-------------------|------|--------------|-----------------------|
|          | DOSE GROUP:<br>SURE LEVEL (mg/m3): | I<br>O |                   | ***  | IV<br>20,000 | V<br>POSITIVE CONTROL |
|          |                                    |        |                   |      |              |                       |
| WEEK -1  | MEAN                               | 128    | 129               | 129  | 128          | 128                   |
|          | S.D.                               | 9.1    | 8.3               | 9.3  | 8.8          | 9.1                   |
|          | N                                  | 10     | 10                | 10   | 10           | 10                    |
| WEEK 0   | MEAN                               | 161    | 164               | 162  | 163          | 162                   |
|          | S.D.                               | 8.7    | 7.7               | 10.7 | 13.4         | 14.4                  |
|          | Ν                                  | 10     | 10                | 10   | 10           | 10                    |
| WEEK 1   | MEAN                               | 193    | 199               | 193  | 199          | 196                   |
|          | S.D.                               | 9.6    | 10.4              | 15.3 | 15.3         | 21.1                  |
|          | N                                  | 10     | 10                | 10   | 10           | 10                    |
| WEEK 2   | MEAN                               | 217    | 224               | 216  | 225          | 218                   |
|          | S.D.                               | 14.3   | 9.8               | 18.8 | 17.7         | 21.9                  |
|          | N                                  | 10     | 10                | 10   | 10           | 10                    |
| WEEK 3   | MEAN                               | 232    | 240               | 231  | 240          | 237                   |
| indent o | S.D.                               | 18.5   | 14.2              | 17.9 | 20.6         | 31.0                  |
|          | N                                  | 10     | 10                | 10   | 10           | 10                    |
| WEEK 4   | MEAN                               | 237    | 249               | 237  | 248          | 230                   |
|          | S.D.                               | 20.1   | 13.0              | 20.7 | 21.4         | 28.4                  |
|          | N                                  | 10     | 10                | 10   | 10           | 10                    |

No statistically significant differences

PAGE 1256

## TABLE D

#### G MTBE VC: A 13-WEEK WHOLE-BODY INHALATION TOXICITY STUDY IN RATS WITH NEUROTOXICITY ASSESSMENTS AND 4-WEEK IN VIVO GENOTOXICITY AND IMMUNOTOXICITY ASSESSMENTS

| FEMALES |        |                 |                      | MEZ              | AN BODY WEIGHT CHA | ANGE (GRAMS)     |                  |                       |
|---------|--------|-----------------|----------------------|------------------|--------------------|------------------|------------------|-----------------------|
|         | EXPOSU | DOS<br>RE LEVEL | E GROUP:<br>(mg/m3): | I<br>0           | II<br>2,000        | III<br>10,000    | IV<br>20,000     | V<br>POSITIVE CONTROL |
| WEEK    | 0 TO   | 1               | MEAN<br>S.D.<br>N    | 32<br>5.8<br>10  | 35<br>5.9<br>10    | 32<br>6.2<br>10  | 36<br>11.8<br>10 | 34<br>8.5<br>10       |
| WEEK    | 0 TO   | 2               | MEAN<br>S.D.<br>N    | 56<br>10.2<br>10 | 60<br>6.2<br>10    | 54<br>9.2<br>10  | 63<br>15.2<br>10 | 56<br>10.2<br>10      |
| WEEK    | 0 TO   | 3               | MEAN<br>S.D.<br>N    | 72<br>14.3<br>10 | 76<br>12.4<br>10   | 69<br>9.8<br>10  | 78<br>15.8<br>10 | 75<br>18.3<br>10      |
| WEEK    | 0 ТО   | 4               | MEAN<br>S.D.<br>N    | 76<br>15.5<br>10 | 85<br>11.6<br>10   | 75<br>12.0<br>10 | 86<br>16.9<br>10 | 68<br>16.1<br>10      |

No statistically significant differences

## TABLE E

## G MTBE VC: A 13-WEEK WHOLE-BODY INHALATION TOXICITY STUDY IN RATS WITH NEUROTOXICITY ASSESSMENTS AND 4-WEEK IN VIVO GENOTOXICITY AND IMMUNOTOXICITY ASSESSMENTS

| ALES |                  |         |     | NSUMPTION VALUES |        |        |                  |  |
|------|------------------|---------|-----|------------------|--------|--------|------------------|--|
|      | DOSE             | GROUP:  | I   | II               | III    | IV     | v                |  |
|      | EXPOSURE LEVEL ( | mg/m3): | 0   | 2,000            | 10,000 | 20,000 | POSITIVE CONTROL |  |
|      |                  | MEAN    | 133 | 133              | 132    | 135    | 133              |  |
| WEEK | 0                | S.D.    | 7.0 | 8.0              | 5.8    | 6.7    | 7.2              |  |
|      |                  | N N     | 9   | 10               | 10     | 9      | 9                |  |
| WEEK | 1                | MEAN    | 97  | 98               | 96     | 99     | 103              |  |
|      |                  | S.D.    | 5.7 | 7.1              | 4.9    | 7.8    | 6.2              |  |
|      |                  | N       | 10  | 10               | 10     | 10     | 10               |  |
| WEEK | 2                | MEAN    | 86  | 89               | 86     | 89     | 91               |  |
|      |                  | S.D.    | 3.6 | 7.7              | 5.2    | 4.3    | 5.9              |  |
|      |                  | N       | 10  | 10               | 10     | 10     | 10               |  |
| WEEK | 3                | MEAN    | 82  | 84               | 83     | 84     | 86               |  |
|      |                  | S.D.    | 3.7 | 7.2              | 6.4    | 1.8    | 3.5              |  |
|      |                  | N       | 9   | 8                | 9      | 10     | 10               |  |
| WEEK | 4                | MEAN    | 85  | 85               | 83     | 85     | 77*              |  |
|      |                  | S.D.    | 4.2 | 7.2              | б.4    | 1.9    | 5.2              |  |
|      |                  | N       | 10  | 10               | 10     | 10     | 9                |  |

Statistical key: \* = p<0.05

### TABLE F

#### G MTBE VC: A 13-WEEK WHOLE-BODY INHALATION TOXICITY STUDY IN RATS WITH NEUROTOXICITY ASSESSMENTS AND 4-WEEK IN VIVO GENOTOXICITY AND IMMUNOTOXICITY ASSESSMENTS

#### INDIVIDUAL CLINICAL OBSERVATIONS

| ROUP I 0 mg/m3       | INDIVIDUME CHINI                                                                                                                                                                                             |                                                                                                                                                                                                                                                                        |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| OBSERVATIONS         | DAY OF<br>STUDY                                                                                                                                                                                              |                                                                                                                                                                                                                                                                        |
| WITHIN NORMAL LIMITS |                                                                                                                                                                                                              | P                                                                                                                                                                                                                                                                      |
|                      | OBSERVATIONS<br>WITHIN NORMAL LIMITS<br>WITHIN NORMAL LIMITS | ROUP I 0 mg/m3<br>DAY OF<br>OBSERVATIONS STUDY<br>WITHIN NORMAL LIMITS<br>WITHIN NORMAL LIMITS |

CODE: 1-SLIGHT 2-MODERATE 3-MARKED P-PRESENT

.

|           | n Life Sciences 00-6126R                                                                                                                                              |                 |                      | PAGE 1259 |  |  |  |  |  |  |  |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|----------------------|-----------|--|--|--|--|--|--|--|
| Immunotox | icity Sub-Group                                                                                                                                                       | נ               | TABLE F              |           |  |  |  |  |  |  |  |
|           | G MTBE VC: A 13-WEEK WHOLE-BODY INHALATION TOXICITY<br>STUDY IN RATS WITH NEUROTOXICITY ASSESSMENTS AND 4-WEEK<br>IN VIVO GENOTOXICITY AND IMMUNOTOXICITY ASSESSMENTS |                 |                      |           |  |  |  |  |  |  |  |
| FEMALES   | GROUP II 2,000 mg/m3                                                                                                                                                  | INDIVIDUAL CI   | JINICAL OBSERVATIONS |           |  |  |  |  |  |  |  |
| ANIMAL#   | OBSERVATIONS                                                                                                                                                          | DAY OF<br>STUDY | -<br>7               |           |  |  |  |  |  |  |  |
| 2581      | WITHIN NORMAL LIMITS                                                                                                                                                  |                 | P                    |           |  |  |  |  |  |  |  |
| 2582      | WITHIN NORMAL LIMITS                                                                                                                                                  |                 | P                    |           |  |  |  |  |  |  |  |
| 2583      | WITHIN NORMAL LIMITS                                                                                                                                                  |                 | P                    |           |  |  |  |  |  |  |  |
| 2584      | WITHIN NORMAL LIMITS                                                                                                                                                  |                 | P                    |           |  |  |  |  |  |  |  |
| 2585      | APPEARANCE: SOFT PROTRUSION -                                                                                                                                         | MID ABDOMEN     | P                    |           |  |  |  |  |  |  |  |
| 2586      | WITHIN NORMAL LIMITS                                                                                                                                                  |                 | P                    |           |  |  |  |  |  |  |  |
| 2587      | WITHIN NORMAL LIMITS                                                                                                                                                  |                 | P                    |           |  |  |  |  |  |  |  |
| 2588      | WITHIN NORMAL LIMITS                                                                                                                                                  |                 | P                    |           |  |  |  |  |  |  |  |
| 2589      | WITHIN NORMAL LIMITS                                                                                                                                                  |                 | P                    |           |  |  |  |  |  |  |  |
| 2590      | WITHIN NORMAL LIMITS                                                                                                                                                  |                 | P                    |           |  |  |  |  |  |  |  |

## TABLE F

#### G MTBE VC: A 13-WEEK WHOLE-BODY INHALATION TOXICITY STUDY IN RATS WITH NEUROTOXICITY ASSESSMENTS AND 4-WEEK IN VIVO GENOTOXICITY AND IMMUNOTOXICITY ASSESSMENTS

#### INDIVIDUAL CLINICAL OBSERVATIONS

| FEMALES | GROUP III 10,000 mg/m3 | INDIVIDUAL CLIN |   |
|---------|------------------------|-----------------|---|
| ANIMAL# | OBSERVATIONS           | DAY OF<br>STUDY |   |
| 3581    | WITHIN NORMAL LIMITS   |                 | P |
| 3582    | WITHIN NORMAL LIMITS   |                 | P |
| 3583    | WITHIN NORMAL LIMITS   |                 | P |
| 3584    | WITHIN NORMAL LIMITS   |                 | P |
| 3585    | WITHIN NORMAL LIMITS   |                 | P |
| 3586    | WITHIN NORMAL LIMITS   |                 | P |
| 3587    | WITHIN NORMAL LIMITS   |                 | P |
| 3588    | WITHIN NORMAL LIMITS   |                 | P |
| 3589    | WITHIN NORMAL LIMITS   |                 | P |
| 3590    | WITHIN NORMAL LIMITS   |                 | P |

|           | n Life Sciences 00-6126R |                                                                                                                                                                       | PAGE 1261 |
|-----------|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| Immunotox | icity Sub-Group          | TABLE F                                                                                                                                                               |           |
|           |                          | G MTBE VC: A 13-WEEK WHOLE-BODY INHALATION TOXICITY<br>STUDY IN RATS WITH NEUROTOXICITY ASSESSMENTS AND 4-WEEK<br>IN VIVO GENOTOXICITY AND IMMUNOTOXICITY ASSESSMENTS |           |
| FEMALES   | GROUP IV 20,000 mg/m3    | INDIVIDUAL CLINICAL OBSERVATIONS                                                                                                                                      |           |
|           |                          |                                                                                                                                                                       |           |
| ANIMAL#   | OBSERVATIONS             | DAY OF -<br>STUDY 7                                                                                                                                                   | · <b></b> |
| 4581      | WITHIN NORMAL LIMITS     | P                                                                                                                                                                     |           |
| 4582      | WITHIN NORMAL LIMITS     | P                                                                                                                                                                     |           |
| 4583      | WITHIN NORMAL LIMITS     | P                                                                                                                                                                     |           |
| 4584      | WITHIN NORMAL LIMITS     | P                                                                                                                                                                     |           |
| 4585      | WITHIN NORMAL LIMITS     | P                                                                                                                                                                     |           |
| 4586      | WITHIN NORMAL LIMITS     | p                                                                                                                                                                     |           |
| 4587      | WITHIN NORMAL LIMITS     | P                                                                                                                                                                     |           |
| 4588      | WITHIN NORMAL LIMITS     | P                                                                                                                                                                     |           |
| 4589      | WITHIN NORMAL LIMITS     | P                                                                                                                                                                     |           |
| 4590      | WITHIN NORMAL LIMITS     | P                                                                                                                                                                     |           |
|           |                          |                                                                                                                                                                       |           |

PAGE 1262

### TABLE F

#### G MTBE VC: A 13-WEEK WHOLE-BODY INHALATION TOXICITY STUDY IN RATS WITH NEUROTOXICITY ASSESSMENTS AND 4-WEEK IN VIVO GENOTOXICITY AND IMMUNOTOXICITY ASSESSMENTS

#### INDIVIDUAL CLINICAL OBSERVATIONS

| FEMALES | GROUP V POSITIVE CONTROL |                 |        |
|---------|--------------------------|-----------------|--------|
| ANIMAL# | OBSERVATIONS             | DAY OF<br>STUDY | -<br>7 |
| 5581    | WITHIN NORMAL LIMITS     |                 | P      |
| 5582    | WITHIN NORMAL LIMITS     |                 | P      |
| 5583    | WITHIN NORMAL LIMITS     |                 | P      |
| 5584    | WITHIN NORMAL LIMITS     |                 | P      |
| 5585    | WITHIN NORMAL LIMITS     |                 | P      |
| 5586    | WITHIN NORMAL LIMITS     |                 | P      |
| 5587    | WITHIN NORMAL LIMITS     |                 | P      |
| 5588    | WITHIN NORMAL LIMITS     |                 | P      |
| 5589    | WITHIN NORMAL LIMITS     |                 | P      |
| 5590    | WITHIN NORMAL LIMITS     |                 | P      |
|         |                          |                 |        |

PAGE 1263

## TABLE G

## G MTBE VC: A 13-WEEK WHOLE-BODY INHALATION TOXICITY STUDY IN RATS WITH NEUROTOXICITY ASSESSMENTS AND 4-WEEK IN VIVO GENOTOXICITY AND IMMUNOTOXICITY ASSESSMENTS

#### INDIVIDUAL BODY WEIGHTS (GRAMS)

| FEMALES GROUP | I Om | ng/m3  |     |      |      |      |
|---------------|------|--------|-----|------|------|------|
|               | WEEK | OF STU | JDY |      |      |      |
| ANIMAL#       | -1   | 0      | 1   | 2    | 3    | 4    |
| 1581          | 121  | 170    | 191 | 213  | 228  | 237  |
| 1582          | 130  | 151    | 182 | 197  | 209  | 207  |
| 1583          | 119  | 157    | 198 | 222  | 256  | 254  |
| 1584          | 137  | 167    | 195 | 222  | 237  | 239  |
| 1585          | 116  | 156    | 188 | 224  | 233  | 249  |
| 1586          | 128  | 156    | 192 | 220  | 225  | 230  |
| 1587          | 143  | 175    | 211 | 239  | 265  | 274  |
| 1588          | 139  | 165    | 195 | 215  | 224  | 227  |
| 1589          | 127  | 164    | 199 | 231  | 240  | 245  |
| 1590          | 124  | 148    | 176 | 191  | 206  | 210  |
|               |      |        |     |      |      |      |
| MEAN          | 128  | 161    | 193 | 217  | 232  | 237  |
| S.D.          | 9.1  | 8.7    | 9.6 | 14.3 | 18.5 | 20.1 |
| N             | 10   | 10     | 10  | 10   | 10   | 10   |

PAGE 1264

## TABLE G

#### G MTBE VC: A 13-WEEK WHOLE-BODY INHALATION TOXICITY STUDY IN RATS WITH NEUROTOXICITY ASSESSMENTS AND 4-WEEK IN VIVO GENOTOXICITY AND IMMUNOTOXICITY ASSESSMENTS

#### INDIVIDUAL BODY WEIGHTS (GRAMS)

|         | WEEK OF STUDY |     |      |     |      |      |  |  |  |
|---------|---------------|-----|------|-----|------|------|--|--|--|
| ANIMAL# | -1            | 0   | 1    | 2   | 3    | 4    |  |  |  |
| 2581    | 118           | 152 | 176  | 206 | 210  | 230  |  |  |  |
| 2582    | 139           | 171 | 207  | 233 | 241  | 256  |  |  |  |
| 2583    | 118           | 158 | 195  | 214 | 248  | 258  |  |  |  |
| 2584    | 126           | 166 | 205  | 231 | 246  | 255  |  |  |  |
| 2585    | 144           | 174 | 211  | 235 | 253  | 262  |  |  |  |
| 2586    | 130           | 158 | 197  | 214 | 238  | 241  |  |  |  |
| 2587    | . 133         | 174 | 198  | 223 | 227  | 234  |  |  |  |
| 2588    | 131           | 155 | 190  | 224 | 230  | 233  |  |  |  |
| 2589    | 124           | 165 | 202  | 232 | 246  | 261  |  |  |  |
| 2590    | 126           | 166 | 208  | 227 | 258  | 261  |  |  |  |
| MEAN    | 129           | 164 | 199  | 224 | 240  | 249  |  |  |  |
| S.D.    | 8.3           | 7.7 | 10.4 | 9.8 | 14.2 | 13.0 |  |  |  |
| N       | 10            | 10  | 10   | 10  | 10   | 10   |  |  |  |

## TABLE G

#### G MTBE VC: A 13-WEEK WHOLE-BODY INHALATION TOXICITY STUDY IN RATS WITH NEUROTOXICITY ASSESSMENTS AND 4-WEEK IN VIVO GENOTOXICITY AND IMMUNOTOXICITY ASSESSMENTS

#### INDIVIDUAL BODY WEIGHTS (GRAMS)

| FEMALES | GROUP II | I    | 10,000 1 | mg/m3 |      |      |      |      |      |      | <br> |  |
|---------|----------|------|----------|-------|------|------|------|------|------|------|------|--|
|         |          | WEE: | K OF ST  | UDY   |      |      |      | <br> | <br> | <br> |      |  |
| ANIMAL# | 1        | -1   | 0        | 1     | 2    | 3    | 4    |      |      |      |      |  |
| 3581    |          | 143  | <br>175  | 213   | 244  | 269  | 271  | <br> | <br> | <br> | <br> |  |
| 3582    |          | 118  | 156      | 181   | 196  | 219  | 226  |      |      |      |      |  |
| 3583    |          | 122  | 151      | 180   | 198  | 214  | 213  |      |      |      |      |  |
| 3584    |          | 140  | 171      | 206   | 226  | 230  | 235  |      |      |      |      |  |
| 3585    |          | 128  | 154      | 188   | 208  | 222  | 216  |      |      |      |      |  |
| 3586    | 1        | 116  | 145      | 173   | 189  | 207  | 214  |      |      |      |      |  |
| 3587    | •        | 130  | 173      | 210   | 235  | 246  | 264  |      |      |      |      |  |
| 3588    |          | 138  | 175      | 210   | 234  | 244  | 255  |      |      |      |      |  |
| 3589    | r        | 125  | 159      | 195   | 218  | 231  | 240  |      |      |      |      |  |
| 3590    | 1        | 126  | 160      | 179   | 209  | 226  | 234  |      |      |      |      |  |
| MEAN    |          | 129  | 162      | 193   | 216  | 231  | 237  |      |      |      |      |  |
| S.D.    |          | 9.3  | 10.7     | 15.3  | 18.8 | 17.9 | 20.7 |      |      |      |      |  |
| N       |          | 10   | 10       | 10    | 10   | 10   | 10   |      |      |      |      |  |

PAGE 1266

## TABLE G

### G MTBE VC: A 13-WEEK WHOLE-BODY INHALATION TOXICITY STUDY IN RATS WITH NEUROTOXICITY ASSESSMENTS AND 4-WEEK IN VIVO GENOTOXICITY AND IMMUNOTOXICITY ASSESSMENTS

#### INDIVIDUAL BODY WEIGHTS (GRAMS)

| FEMALES GROU | JPIV 20 | 0,000 m | g/m3 |      |      |      |  |
|--------------|---------|---------|------|------|------|------|--|
|              | WEE     | K OF ST | UDY  |      |      |      |  |
| ANIMAL#      | -1      | 0       | 1    | 2    | 3    | 4    |  |
| 4581         | 124     | 161     | 184  | 219  | 236  | 239  |  |
| 4582         | 119     | 142     | 173  | 194  | 204  | 206  |  |
| 4583         | 132     | 143     | 209  | 240  | 252  | 263  |  |
| 4584         | 142     | 174     | 211  | 234  | 247  | 257  |  |
| 4585         | 127     | 171     | 207  | 239  | 256  | 260  |  |
| 4586         | 130     | 178     | 220  | 253  | 267  | 278  |  |
| 4587         | 129     | 157     | 185  | 203  | 206  | 221  |  |
| 4588         | 115     | 156     | 188  | 220  | 239  | 248  |  |
| 4589         | 123     | 166     | 199  | 227  | 243  | 258  |  |
| 4590         | 141     | 179     | 211  | 224  | 252  | 255  |  |
| IEAN         | 128     | 163     | 199  | 225  | 240  | 248  |  |
| 5.D.         | 8.8     | 13.4    | 15.3 | 17.7 | 20.6 | 21.4 |  |
| N            | 10      | 10      | 10   | 10   | 10   | 10   |  |

PAGE 1267

## TABLE G

## G MTBE VC: A 13-WEEK WHOLE-BODY INHALATION TOXICITY STUDY IN RATS WITH NEUROTOXICITY ASSESSMENTS AND 4-WEEK IN VIVO GENOTOXICITY AND IMMUNOTOXICITY ASSESSMENTS

#### INDIVIDUAL BODY WEIGHTS (GRAMS)

| FEMALES | GROUP V | PO  | SITIVE ( | CONTROL |      |      |      |
|---------|---------|-----|----------|---------|------|------|------|
|         |         | WEE | K OF STU | JDY     |      |      |      |
| ANIMAL# |         | -1  | 0        | l       | 2    | 3    | 4    |
| 5581    |         | 117 | 145      | 171     | 188  | 199  | 200  |
| 5582    |         | 118 | 145      | 180     | 202  | 215  | 210  |
| 5583    |         | 127 | 165      | 203     | 227  | 251  | 242  |
| 5584    |         | 135 | 154      | 177     | 200  | 210  | 203  |
| 5585    |         | 143 | 172      | 199     | 221  | 246  | 232  |
| 5586    |         | 125 | 152      | 188     | 209  | 220  | 212  |
| 5587    |         | 121 | 161      | 194     | 220  | 245  | 241  |
| 5588    |         | 131 | 159      | 186     | 207  | 213  | 208  |
| 5589    |         | 128 | 175      | 215     | 251  | 273  | 261  |
| 5590    |         | 142 | 191      | 243     | 256  | 296  | 287  |
| MEAN    |         | 128 | 162      | 196     | 218  | 237  | 230  |
| S.D.    |         | 9.1 | 14.4     | 21.1    | 21.9 | 31.0 | 28.4 |
| N       |         | 10  | 10       | 10      | 10   | 10   | 10   |

PAGE 1268

## TABLE H

#### G MTBE VC: A 13-WEEK WHOLE-BODY INHALATION TOXICITY STUDY IN RATS WITH NEUROTOXICITY ASSESSMENTS AND 4-WEEK IN VIVO GENOTOXICITY AND IMMUNOTOXICITY ASSESSMENTS

| FEMALES GROU | PI 01 | ng/m3  |       |        |  |
|--------------|-------|--------|-------|--------|--|
|              | WEEK  | OF STU | DY    |        |  |
| ANIMAL#      | 0-1   | 0-2    | 0 - 3 | 0 - 4  |  |
| 1581         | 21    | 43     | 58    | <br>67 |  |
| 1582         | 31    | 46     | 58    | 56     |  |
| 1583         | 41    | 65     | 99    | 97     |  |
| 1584         | 27    | 54     | 69    | 71     |  |
| 1585         | 32    | 68     | 77    | 92     |  |
| 1586         | 36    | 64     | 69    | 74     |  |
| 1587         | 36    | 64     | 90    | 99     |  |
| 1588         | 30    | 50     | 59    | 62     |  |
| 1589         | 36    | 67     | 76    | 81     |  |
| 1590         | 28    | 44     | 59    | 62     |  |
| MEAN         | 32    | 56     | 72    | 76     |  |
| S.D.         | 5.8   | 10.2   | 14.3  | 15.5   |  |
| N            | 10    | 10     | 10    | 10     |  |

PAGE 1269

## TABLE H

#### G MTBE VC: A 13-WEEK WHOLE-BODY INHALATION TOXICITY STUDY IN RATS WITH NEUROTOXICITY ASSESSMENTS AND 4-WEEK IN VIVO GENOTOXICITY AND IMMUNOTOXICITY ASSESSMENTS

| FEMALES ( | GROUP II 2 | ,000 mg | /m3    |       |  |
|-----------|------------|---------|--------|-------|--|
|           | <br>WEEK   | OF STU  | <br>DY |       |  |
| ANIMAL#   | 0-1        | 0 - 2   | 0 - 3  | 0 - 4 |  |
| 2581      | 25         | 54      | 58     | 79    |  |
| 2582      | 37         | 62      | 71     | 85    |  |
| 2583      | 37         | 56      | 90     | 100   |  |
| 2584      | 39         | 65      | 80     | 89    |  |
| 2585      | 38         | 62      | 79     | 88    |  |
| 2586      | 38         | 55      | 79     | 82    |  |
| 2587      | 24         | 49      | 53     | 60    |  |
| 2588      | 35         | 69      | 74     | 78    |  |
| 2589      | 37         | 67      | 82     | 96    |  |
| 2590      | 42         | 62      | 92     | 95    |  |
| MEAN      | 35         | 60      | 76     | 85    |  |
| S.D.      | 5.9        | 6.2     | 12.4   | 11.6  |  |
| N         | 10         | 10      | 10     | 10    |  |

PAGE 1270

## TABLE H

#### G MTBE VC: A 13-WEEK WHOLE-BODY INHALATION TOXICITY STUDY IN RATS WITH NEUROTOXICITY ASSESSMENTS AND 4-WEEK IN VIVO GENOTOXICITY AND IMMUNOTOXICITY ASSESSMENTS

| FEMALES GROU | JP III 1 | .0,000 m | 1g/m3 |      |  |
|--------------|----------|----------|-------|------|--|
|              | WEEK     | OF STUE  | Y     |      |  |
| ANIMAL#      | 0-1      | 0 - 2    | 0 - 3 | 0-4  |  |
| 3581         | 39       | 70       | 94    | 96   |  |
| 3582         | 25       | 40       | 63    | 71   |  |
| 3583         | 28       | 46       | 63    | 62   |  |
| 3584         | 35       | 55       | 59    | 64   |  |
| 3585         | 33       | 54       | 67    | 62   |  |
| 3586         | 29       | 44       | 62    | 69   |  |
| 3587         | 37       | 62       | 73    | 91   |  |
| 3588         | 36       | 60       | 69    | 80   |  |
| 3589         | 36       | 59       | 72    | 82   |  |
| 3590         | 19       | 48       | 66    | 74   |  |
| MEAN         | 32       | 54       | 69    | 75   |  |
| S.D.         | 6.2      | 9.2      | 9.8   | 12.0 |  |
| N            | 10       | 10       | 10    | 10   |  |

PAGE 1271

## TABLE H

## G MTBE VC: A 13-WEEK WHOLE-BODY INHALATION TOXICITY STUDY IN RATS WITH NEUROTOXICITY ASSESSMENTS AND 4-WEEK IN VIVO GENOTOXICITY AND IMMUNOTOXICITY ASSESSMENTS

| FEMALES GROU | JP IV 20 | 0,000 m | g/m3 |       |  |
|--------------|----------|---------|------|-------|--|
|              | WEEK     | OF STU  | DY   |       |  |
| ANIMAL#      | 0-1      | 0 - 2   | 0-3  | 0 - 4 |  |
| 4581         | 23       | 57      | 75   | 77    |  |
| 4582         | 31       | 52      | 62   | 64    |  |
| 4583         | 67       | 97      | 109  | 120   |  |
| 4584         | 37       | 60      | 74   | 83    |  |
| 4585         | 36       | 68      | 84   | 88    |  |
| 4586         | 42       | 75      | 89   | 100   |  |
| 4587         | 28       | 46      | 49   | 64    |  |
| 4588         | 32       | 64      | 83   | 92    |  |
| 4589         | 34       | 62      | 78   | 92    |  |
| 4590         | 33       | 45      | 73   | 77    |  |
| MEAN         | 36       | 63      | 78   | 86    |  |
| S.D.         | 11.8     | 15.2    | 15.8 | 16.9  |  |
| N            | 10       | 10      | 10   | 10    |  |

TABLE H

#### G MTBE VC: A 13-WEEK WHOLE-BODY INHALATION TOXICITY STUDY IN RATS WITH NEUROTOXICITY ASSESSMENTS AND 4-WEEK IN VIVO GENOTOXICITY AND IMMUNOTOXICITY ASSESSMENTS

#### INDIVIDUAL BODY WEIGHT CHANGE (GRAMS)

| FEMALES | GROUP V | POS  | SITIVE C | CONTROL |       |  |
|---------|---------|------|----------|---------|-------|--|
|         |         |      |          |         |       |  |
|         |         | WEEK | OF STUE  | ŊΥ      |       |  |
| ANIMAL# |         | 0-1  | 0-2      | 0-3     | 0 - 4 |  |
|         |         |      |          |         |       |  |
| 5581    |         | 26   | 43       | 54      | 55    |  |
| 5582    |         | 35   | 57       | 71      | 65    |  |
| 5583    |         | 38   | 62       | 85      | 77    |  |
| 5584    |         | 23   | 45       | 56      | 49    |  |
| 5585    |         | 28   | 49       | 74      | 60    |  |
| 5586    |         | 36   | 57       | 68      | 60    |  |
| 5587    |         | 34   | 59       | 85      | 80    |  |
| 5588    |         | 27   | 48       | 53      | 49    |  |
| 5589    |         | 40   | 77       | 98      | 86    |  |
| 5590    |         | 52   | 65       | 105     | 96    |  |
| MEAN    |         | 34   | 56       | 75      | 68    |  |
| S.D.    |         | 8.5  | 10.2     | 18.3    | 16.1  |  |
| N       |         | 10   | 10       | 10      | 10    |  |

## TABLE I

#### G MTBE VC: A 13-WEEK WHOLE-BODY INHALATION TOXICITY STUDY IN RATS WITH NEUROTOXICITY ASSESSMENTS AND 4-WEEK IN VIVO GENOTOXICITY AND IMMUNOTOXICITY ASSESSMENTS

INDIVIDUAL FEED CONSUMPTION VALUES (GRAMS/KG/DAY)

| FEMALES | GROUP I   | 0 n   | ng/m3   |                          |     |     |      |
|---------|-----------|-------|---------|--------------------------|-----|-----|------|
|         |           | WEEK  | COF STU | . <b></b><br>то <b>ү</b> |     |     | <br> |
| ANIMAL# |           | 0     | 1       | 2                        | 3   | 4   |      |
|         | <b></b> - |       |         |                          |     |     | <br> |
| 1581    |           | 137   | 88      | 77                       | 77  | 81  |      |
| 1582    |           | 122   | 93      | 85                       | 81  | 82  |      |
| 1583    |           | 139   | 100     | 83                       | 85  | 77  |      |
| 1584    |           | 125   | 92      | 86                       | 78  | 88  |      |
| 1585    |           | 141   | 101     | 86                       | 79  | 88  |      |
| 1586    |           | 132   | 102     | 89                       | 86  | 86  |      |
| 1587    |           | 128   | 94      | 87                       | 87  | 87  |      |
| 1588    |           | SF    | 107     | 90                       | SF  | 92  |      |
| 1589    |           | 140   | 96      | 87                       | 80  | 84  |      |
| 1590    |           | 129   | 94      | , 87                     | 86  | 82  |      |
|         |           | 1 7 7 | 07      | 9.6                      |     | 0 5 |      |
| MEAN    |           | 133   | 97      | 86                       | 82  | 85  |      |
| S.D.    |           | 7.0   | 5.7     | 3.6                      | 3.7 | 4.2 |      |
| N       |           | 9     | 10      | 10                       | 9   | 10  |      |

SF=Spilled Feeder

TABLE I

### G MTBE VC: A 13-WEEK WHOLE-BODY INHALATION TOXICITY STUDY IN RATS WITH NEUROTOXICITY ASSESSMENTS AND 4-WEEK IN VIVO GENOTOXICITY AND IMMUNOTOXICITY ASSESSMENTS

| INDIVIDUAL | FEED | CONSUMPTION | VALUES | (GRAMS/KG/DAY) |
|------------|------|-------------|--------|----------------|

|         | WEEK | OF STU | DY  |     |     |
|---------|------|--------|-----|-----|-----|
| ANIMAL# | 0    | 1      | 2   | 3   | 4   |
| 2581    | 134  | 103    | 98  | 88  | 97  |
| 2582    | 118  | 83     | 74  | 72  | 74  |
| 2583    | 138  | 97     | 83  | 86  | 83  |
| 2584    | 139  | 103    | 90  | SF  | 90  |
| 2585    | 123  | 92     | 87  | 81  | 79  |
| 2586    | 137  | 107    | 98  | 97  | 93  |
| 2587    | 133  | 92     | 84  | 80  | 80  |
| 2588    | 127  | 101    | 96  | SF  | 89  |
| 2589    | 142  | 100    | 90  | 85  | 88  |
| 2590    | 142  | 100    | 86  | 86  | 80  |
| MEAN    | 133  | 98     | 89  | 84  | 85  |
| S.D.    | 8.0  | 7.1    | 7.7 | 7.2 | 7.2 |
| N       | 10   | 10     | 10  | 8   | 10  |

SF=Spilled Feeder

## TABLE I

## G MTBE VC: A 13-WEEK WHOLE-BODY INHALATION TOXICITY STUDY IN RATS WITH NEUROTOXICITY ASSESSMENTS AND 4-WEEK IN VIVO GENOTOXICITY AND IMMUNOTOXICITY ASSESSMENTS

| TNDTVTDUAT. | FEED | CONSUMPTION | VALUES   | (GRAMS/KG/DAY)     |
|-------------|------|-------------|----------|--------------------|
| TNDTATDOND  | reev | COMPONETTON | A WRO RD | (UIGHID) ICO/DITT/ |

| EMALES GROU | JP III 1 | .0,000 m | ng/m3 |     |     |  |
|-------------|----------|----------|-------|-----|-----|--|
|             | WEEK     | OF STU   | IDY   |     |     |  |
| ANIMAL#     | 0        | 1        | 2     | 3   | 4   |  |
| 3581        | 128      | 99       | 88    | 86  | 86  |  |
| 3582        | 134      | 94       | 84    | 83  | 80  |  |
| 3583        | 128      | 93       | 80    | 75  | 80  |  |
| 3584        | 128      | 98       | 86    | SF  | 84  |  |
| 3585        | 124      | 89       | 76    | 72  | 70  |  |
| 3586        | 131      | 93       | 90    | 86  | 84  |  |
| 3587        | 144      | 106      | 92    | 94  | 95  |  |
| 3588        | 134      | 96       | 84    | 82  | 84  |  |
| 3589        | 130      | 97       | 88    | 82  | 82  |  |
| 3590        | 138      | 91       | 92    | 86  | 87  |  |
| EAN         | 132      | 96       | 86    | 83  | 83  |  |
| .D.         | 5.8      | 4.9      | 5.2   | 6.4 | 6.4 |  |
| N           | 10       | 10       | 10    | 9   | 10  |  |

SF=Spilled Feeder

### TABLE I

### G MTBE VC: A 13-WEEK WHOLE-BODY INHALATION TOXICITY STUDY IN RATS WITH NEUROTOXICITY ASSESSMENTS AND 4-WEEK IN VIVO GENOTOXICITY AND IMMUNOTOXICITY ASSESSMENTS

| INDIVIDUAL | FEED | CONSUMPTION | VALUES | (GRAMS/KG/DAY) |
|------------|------|-------------|--------|----------------|

|         | WEEK | OF STU | DY  |     |     |
|---------|------|--------|-----|-----|-----|
| ANIMAL# | 0    | 1      | 2   | 3   | 4   |
| 4581    | 128  | 89     | 89  | 84  | 88  |
| 4582    | 133  | 96     | 88  | 82  | 83  |
| 4583    | 131  | 117    | 91  | 84  | 87  |
| 4584    | 141  | 101    | 89  | 83  | 87  |
| 4585    | 144  | 105    | 98  | 85  | 83  |
| 4586    | 139  | 100    | 83  | 83  | 83  |
| 4587    | 124  | 93     | 85  | 84  | 87  |
| 4588    | 141  | 101    | 89  | 85  | 85  |
| 4589    | CF   | 97     | 90  | 84  | 85  |
| 4590    | 135  | 94     | 85  | 88  | 85  |
| MEAN    | 135  | 99     | 89  | 84  | 85  |
| S.D.    | 6.7  | 7.8    | 4.3 | 1.8 | 1.9 |
| N       | 9    | 10     | 10  | 10  | 10  |

CF=Contaminated Feeder

PAGE 1277

#### TABLE I

## G MTBE VC: A 13-WEEK WHOLE-BODY INHALATION TOXICITY STUDY IN RATS WITH NEUROTOXICITY ASSESSMENTS AND 4-WEEK IN VIVO GENOTOXICITY AND IMMUNOTOXICITY ASSESSMENTS

|         |         |     |         |        | INDI | VIDUAL | L FEED CONSUMPTION VALUES (GRAMS/KG/DAY) |   |
|---------|---------|-----|---------|--------|------|--------|------------------------------------------|---|
| FEMALES | GROUP V | POS | ITIVE C | ONTROL |      |        |                                          |   |
|         |         |     |         |        |      |        |                                          | - |
|         |         |     | OF STU  |        |      |        |                                          |   |
| ANIMAL# |         | 0   | 1       | 2      | 3    | 4      |                                          | _ |
| 5581    |         | 134 | 101     | 91     | 85   | 87     |                                          |   |
| 5582    |         | 132 | 103     | 93     | 85   | 75     |                                          |   |
| 5583    |         | 139 | 106     | 91     | 86   | 72     |                                          |   |
| 5584    |         | SF  | 99      | 95     | 91   | SF     |                                          |   |
| 5585    |         | 127 | 92      | 87     | 87   | 78     |                                          |   |
| 5586    |         | 139 | 113     | 95     | 91   | 81     |                                          |   |
| 5587    |         | 138 | 102     | 91     | 87   | 77     |                                          |   |
| 5588    |         | 120 | 96      | 84     | 80   | 70     |                                          |   |
| 5589    |         | 142 | 109     | 100    | 90   | 77     |                                          |   |
| 5590    |         | 129 | 106     | 80     | 84   | 72     |                                          |   |
| MEAN    |         | 133 | 103     | 91     | 86   | 77     |                                          |   |
| S.D.    |         | 7.2 | 6.2     | 5.9    | 3.5  | 5.2    |                                          |   |
| N       |         | 9   | 10      | 10     | 10   | 9      |                                          |   |

SF=Spilled Feeder

## TABLE J

## G MTBE VC: A 13-WEEK WHOLE-BODY INHALATION TOXICITY STUDY IN RATS WITH NEUROTOXICITY ASSESSMENTS AND 4-WEEK IN VIVO GENOTOXICITY AND IMMUNOTOXICITY ASSESSMENTS

#### ANIMAL TERMINATION HISTORY

|         | TYPE OF            | DATE OF   | WEEK OF | STUDY |
|---------|--------------------|-----------|---------|-------|
| ANIMAL# | DEATH              | DEATH     | STUDY   | DAY   |
| 1581    | TERMINAL SACRIFICE | 29-AUG-01 | 3       | 27    |
| 1582    | TERMINAL SACRIFICE | 29-AUG-01 | 3       | 27    |
| 1583    | TERMINAL SACRIFICE | 29-AUG-01 | 3       | 27    |
| 1584    | TERMINAL SACRIFICE | 29-AUG-01 | 3       | 27    |
| 1585    | TERMINAL SACRIFICE | 29-AUG-01 | 3       | 27    |
| 1586    | TERMINAL SACRIFICE | 29-AUG-01 | 3       | 27    |
| 1587    | TERMINAL SACRIFICE | 29-AUG-01 | 3       | 27    |
| 1588    | TERMINAL SACRIFICE | 29-AUG-01 | 3       | 27    |
| 1589    | TERMINAL SACRIFICE | 29-AUG-01 | 3       | 27    |
| 1590    | TERMINAL SACRIFICE | 29-AUG-01 | 3       | 27    |

## TABLE J

#### G MTBE VC: A 13-WEEK WHOLE-BODY INHALATION TOXICITY STUDY IN RATS WITH NEUROTOXICITY ASSESSMENTS AND 4-WEEK IN VIVO GENOTOXICITY AND IMMUNOTOXICITY ASSESSMENTS

#### ANIMAL TERMINATION HISTORY

| TYPE OF |                    | DATE OF   | WEEK OF | STUDY |
|---------|--------------------|-----------|---------|-------|
| ANIMAL# | DEATH              | DEATH     | STUDY   | DAY   |
| 2581    | TERMINAL SACRIFICE | 29-AUG-01 | 3       | 27    |
| 2582    | TERMINAL SACRIFICE | 29-AUG-01 | 3       | 27    |
| 2583    | TERMINAL SACRIFICE | 29-AUG-01 | 3       | 27    |
| 2584    | TERMINAL SACRIFICE | 29-AUG-01 | 3       | 27    |
| 2585    | TERMINAL SACRIFICE | 29-AUG-01 | 3       | 27    |
| 2586    | TERMINAL SACRIFICE | 29-AUG-01 | 3       | 27    |
| 2587    | TERMINAL SACRIFICE | 29-AUG-01 | 3       | 27    |
| 2588    | TERMINAL SACRIFICE | 29-AUG-01 | 3       | 27    |
| 2589    | TERMINAL SACRIFICE | 29-AUG-01 | 3       | 27    |
| 2590    | TERMINAL SACRIFICE | 29-AUG-01 | 3       | 27    |

## TABLE J

#### G MTBE VC: A 13-WEEK WHOLE-BODY INHALATION TOXICITY STUDY IN RATS WITH NEUROTOXICITY ASSESSMENTS AND 4-WEEK IN VIVO GENOTOXICITY AND IMMUNOTOXICITY ASSESSMENTS

#### ANIMAL TERMINATION HISTORY

|        | TYPE OF            | DATE OF   | WEEK OF | STUDY |
|--------|--------------------|-----------|---------|-------|
| NIMAL# | DEATH              | DEATH     | STUDY   | DAY   |
| 3581   | TERMINAL SACRIFICE | 29-AUG-01 | 3       | 27    |
| 3582   | TERMINAL SACRIFICE | 29-AUG-01 | 3       | 27    |
| 3583   | TERMINAL SACRIFICE | 29-AUG-01 | 3       | 27    |
| 3584   | TERMINAL SACRIFICE | 29-AUG-01 | 3       | 27    |
| 3585   | TERMINAL SACRIFICE | 29-AUG-01 | 3       | 27    |
| 3586   | TERMINAL SACRIFICE | 29-AUG-01 | 3       | 27    |
| 3587   | TERMINAL SACRIFICE | 29-AUG-01 | 3       | 27    |
| 3588   | TERMINAL SACRIFICE | 29-AUG-01 | 3       | 27    |
| 3589   | TERMINAL SACRIFICE | 29-AUG-01 | 3       | 27    |
| 3590   | TERMINAL SACRIFICE | 29-AUG-01 | 3       | 27    |

## TABLE J

## G MTBE VC: A 13-WEEK WHOLE-BODY INHALATION TOXICITY STUDY IN RATS WITH NEUROTOXICITY ASSESSMENTS AND 4-WEEK IN VIVO GENOTOXICITY AND IMMUNOTOXICITY ASSESSMENTS

#### ANIMAL TERMINATION HISTORY

| NIMAL# | TYPE OF<br>DEATH   | DATE OF<br>DEATH | WEEK OF<br>STUDY | STUDY<br>DAY |
|--------|--------------------|------------------|------------------|--------------|
| 4581   | TERMINAL SACRIFICE | 29-AUG-01        | 3                | 27           |
| 4582   | TERMINAL SACRIFICE | 29-AUG-01        | 3                | 27           |
| 4583   | TERMINAL SACRIFICE | 29-AUG-01        | 3                | 27           |
| 4584   | TERMINAL SACRIFICE | 29-AUG-01        | 3                | 27           |
| 4585   | TERMINAL SACRIFICE | 29-AUG-01        | 3                | 27           |
| 4586   | TERMINAL SACRIFICE | 29-AUG-01        | 3                | 27           |
| 4587   | TERMINAL SACRIFICE | 29-AUG-01        | 3                | 27           |
| 4588   | TERMINAL SACRIFICE | 29-AUG-01        | 3                | 27           |
| 4589   | TERMINAL SACRIFICE | 29-AUG-01        | 3                | 27           |
| 4590   | TERMINAL SACRIFICE | 29-AUG-01        | 3                | 27           |

## TABLE J

#### G MTBE VC: A 13-WEEK WHOLE-BODY INHALATION TOXICITY STUDY IN RATS WITH NEUROTOXICITY ASSESSMENTS AND 4-WEEK IN VIVO GENOTOXICITY AND IMMUNOTOXICITY ASSESSMENTS

#### ANIMAL TERMINATION HISTORY

|      | TYPE OF            | DATE OF   | WEEK OF | STUDY |
|------|--------------------|-----------|---------|-------|
| MAL# | DEATH              | DEATH     | STUDY   | DAY   |
| 5581 | TERMINAL SACRIFICE | 29-AUG-01 | 3       | 27    |
| 5582 | TERMINAL SACRIFICE | 29-AUG-01 | 3       | 27    |
| 5583 | TERMINAL SACRIFICE | 29-AUG-01 | 3       | 27    |
| 5584 | TERMINAL SACRIFICE | 29-AUG-01 | 3       | 27    |
| 5585 | TERMINAL SACRIFICE | 29-AUG-01 | 3       | 27    |
| 5586 | TERMINAL SACRIFICE | 29-AUG-01 | 3       | 27    |
| 5587 | TERMINAL SACRIFICE | 29-AUG-01 | 3       | 27    |
| 5588 | TERMINAL SACRIFICE | 29-AUG-01 | 3       | 27    |
| 5589 | TERMINAL SACRIFICE | 29-AUG-01 | 3       | 27    |
| 5590 | TERMINAL SACRIFICE | 29-AUG-01 | 3       | 27    |